	Introduction	Algorithm outline and physical model	Conclusion

Hair Simulation Model for Real-Time Environments (review)

Petr Kadleček, Martin Kahoun

MFF UK

14.11.2011

(日) (周) (日) (日) (日)

Petr Kadleček, Martin Kahoun

Introduction	Algorithm outline and physical model		Conclusion
• 0 000	00	00	
Introduction		000	Ŭ

Hair Simulation Model for Real-Time Environments Kmoch, P., Bonanni, U. and Magnenat-Thalmann, N.

イロト イポト イヨト イヨト

Proceedings of the 2009 Computer Graphics International Conference

Petr Kadleček, Martin Kahoun

Introduction	Algorithm outline and physical model		Conclusion
00	00	00	
Introduction			

Table of contents

Introduction Introduction Hair animation and related work Algorithm outline and physical model Algorithm outline Physical model Simulation Discrete representation Constraint enforcement Conclusion

Results

Q&A

Petr Kadleček, Martin Kahoun

Introduction	Algorithm outline and physical model		Conclusion
00	00	00	
● 00			
Hair animation and re	lated work		

Introduction

- Head is a natural focal point
- Realistic hair animation is a crucial part of presenting virtual humans
- Hair properties: bends, twists, unstretchable, unshearable, anisotropic, ... (Kirchhoff's hypotheses)

► Typical head = 100,000 hair strands

Introduction	Algorithm outline and physical model		Conclusion
00	00	00	
000			
Hair animation and rel	ated work		

Goals and motivation

- Dynamic hair animation method designed for use in real-time virtual environments
- Physically plausible technique which utilizes specific properties of hair strands
- Enhanced stability due to decoupling major sources of dynamic equation stiffness into a separate post-integration step
- Smooth results even in frequency-sensitive areas such as haptics-based hair modelling

ヘロト ヘアト ヘビト ヘビト

Introduction	Algorithm outline and physical model		Conclusion
00	00	00	
000			
Hair animation and re	ated work		

Hair animation and related work

Methods for animating hair

Volume based

- Volume of "hair matter", individual strands retained
- Free-form lattice, strands attached as viscoelastic springs
- Smoothed particles loosely connected by springs (no notion of strands)

Strand based

- Mass-spring systems
- Rigid multi-body chains
- Cosserat theory of elastic rods (helix as a simulation primitive)

イロト 不得 トイヨト イヨト 二日

	Algorithm outline and physical model		Conclusion
00	●0	00	
Algorithm outline			

Hair simulation algorithm outline

- Per-strand basis (elastic rods)
- Leader strands and follower strands

Petr Kadleček, Martin Kahoun

	Algorithm outline and physical model		Conclusion
00	0	00	
Algorithm outline			

3

Algorithm outline

Algorithm 1 Hair simulation outline

- 1: precompute rest-state values;
- 2: while simulation running do
- 3: compute forces;
- 4: integrate equations of motion;
- 5: detect hair-head collisions;
- 6: while constraints or collisions unsolved do
- 7: perform one constraint enforcement step;
- 8: end while
- 9: if positions changed then
- 10: update velocities;
- 11: end if
- 12: update Bishop frame;
- 13: compute twist;
- 14: end while

Petr Kadleček, Martin Kahoun

	Algorithm outline and physical model	Conclusion
Physical model		

Kirchhoff's rods

rod = deformable body whose one dimension (length) is significantly larger than the other two (cross section)

$$\Gamma(s) = \{\mathbf{x}(s), \mathbf{m}_1(s), \mathbf{m}_2(s)\}$$
(1)

3

- ▶ **x**(*s*) is centreline position
- m_{1,2}(s) are axes of the cross section s runs from 0 to the rod's length L

Petr Kadleček, Martin Kahoun

	Algorithm outline and physical model		Conclusion
00	00	00	
	00		
Physical model			

Twist and bend: material frame vs Bishop frame

- frame (linear algebra) = a certain type of ordered set of vectors that spans a space
- Let $\mathbf{t}(s)$ be a unit vector tangent to the centreline, $t(s) \parallel x'(s)$
- ▶ **t**(*s*) form a {**t**, **m**₁, **m**₂} *material frame* (orthonormal frame)
- ► Express the material frame as a rotation of a twist-free reference frame → Bishop frame {t(s), u(s), v(s)}
- ► Twist representation using scalar function Θ measuring the angle (around the tangent) between the material frame and the Bishop frame
- ► Rod's elastic energy expressed using 4 dimensions (x(s) and Θ)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Petr Kadleček, Martin Kahoun

	Algorithm outline and physical model	Simulation	Conclusion
00	00	0	

Discrete representation

Polyline hair approximation

► Rod $\Gamma(s)$ as n + 2 nodes $x_0, x_1, ..., x_{n+1}$ and n + 1 segments $e^0, e^1, ..., e^n$

・ロト ・同ト ・ヨト ・ヨト

Material frame assigned to each segment

	Algorithm outline and physical model	Simulation	Conclusion
00	00	00	
Discrete representation			

Integration step

- Twist treated quasistatically, only elastic force, gravity and friction applied
- Elastic force tries to minimize elastic energy across nodes
- Concept of holonomy used to express energy derivatives between frames

イロト 不得 トイヨト イヨト 二日

Equations integrated using sympletic Euler method

	Algorithm outline and physical model	Simulation	Conclusion
00	00	00	
		000	
Constraint enforcemen	t		

Constraint enforcement

- Using fast manifold projection by Goldenthal et. al. (2007)
- Post-integration step, removes numerical stiffness

Constraint types

$$CI^{j} = \mathbf{e}^{j} \cdot \mathbf{e}^{j} - \hat{\mathbf{e}}^{j} \cdot \hat{\mathbf{e}}^{j}$$

$$CR_{0} = \hat{\mathbf{x}}_{0} - \mathbf{x}_{0}$$

$$CH_{i} = (\mathbf{x}_{i} - \mathbf{h}) \cdot (\mathbf{x}_{i} - \mathbf{h}) - \hat{r}$$

inextensibility (j = 1, 2, ...n)rigid body coupling hair head collisions $(i \in P)$

イロト 不得 とくほと くほとう ほ

Petr Kadleček, Martin Kahoun

	Algorithm outline and physical model	Simulation	Conclusion
00	00	00	
		000	
Constraint enforcemen	t		

Fast manifold projection

- Fast manifold projection method based on Constrained Lagrangean Mechanics
- Finding a "nearby" constrained configuration for an uncostrained one
- "Nearby" based on the manifold's natural metric
- In our case in terms of kinetic energy: $\frac{1}{2} \mathbf{v}^T \mathbf{M} \mathbf{v}$

Energy functional

$$L(\mathbf{x}, \mathbf{v}) = \frac{1}{2} \mathbf{v}^T \mathbf{M} \mathbf{v} - \mathbf{C}(\mathbf{x})^T \cdot \lambda$$
$$\mathbf{M} \dot{\mathbf{v}} = -\nabla \mathbf{C}(\mathbf{x})^T \cdot \lambda, \ \mathbf{C}(\mathbf{x}) = \mathbf{0}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Petr Kadleček, Martin Kahoun

	Algorithm outline and physical model	Simulation	Conclusion
00	00	00	
		000	
Constraint enforcemen	t		

Fast manifold projection (cont.)

- For elaborate derivation refer to Efficient Simulation of Inextensible Cloth by Goldenthal et. al. (2007)
- Iterative Newtonian minimalization

Discrete linear system

$$\delta \mathbf{x}_{i+1} = -h^2 \mathbf{M}^{-1} \nabla \mathbf{C}(\mathbf{x}_i)^T \delta \lambda_{i+1}$$
(2)

$$\nabla \mathbf{C}(\mathbf{x}_i) \delta \mathbf{x}_{i+1} = -\mathbf{C}(\mathbf{x}_i) \tag{3}$$

$$h^{2}(\nabla \mathbf{C}(\mathbf{x}_{i})\mathbf{M}^{-1}\nabla \mathbf{C}(\mathbf{x}_{i})^{T})\delta\lambda_{i+1} = \mathbf{C}\mathbf{x}_{i}$$
(4)

Petr Kadleček, Martin Kahoun

	Algorithm outline and physical model		Conclusion
00	00	00	•
Results			

Results

- Model linear with number of nodes (strands)
- Twisting computed 2x faster than using Newtonian methods
- Collisions introduce negligible overhead
- Medium sized scenes reach real-time performance (1kHz)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Further improvements possible via GPU parallel

	Algorithm outline and physical model		Conclusion
00	00	00	
			•
Q&A			

Q&A

Petr Kadleček, Martin Kahoun