Project Number :	764

Project Acronym :	ADOORE

Contract Number :	CP94-764

Project Start Date :	1 January 1995

ADOORE Consortium :	Charles University (Czech Republic)

	DCIT (Czech Republic)

	IQSOFT (Hungary)

	Objectif Technologie (France)

�

Document Name :	GEN.LIB C++ Reference manual

Document Author(s) :	V. Bisova (Charles University)

Document Reference :	LRM01\CU\BIS70930\BIS70930.DOC\B

Circulation :	ADOORE Consortium

The information contained in this document is subject to change without notice and should not be construed as a commitment by any members of the ADOORE Consortium. In the event of any software or algorithms being described in this report, the ADOORE Consortium assumes no responsibility for the use or inability to use any of its software or algorithms. The information is provided without any warranty of any kind and the ADOORE Consortium expressly disclaims all implied warranties, including but not limited to the implied warranties of merchantability and fitness for a particular use.

Commission of the European Communities

Copernicus Programme

Document identification

Title : GEN.LIB C++ Reference Manual�����Author(s) : Veronika Bisova�Company Id. : CU��Project Reference :LRM01�Organisation Reference :

 BIS70930��Support : BIS70930.DOC�����Validated by : �Validation Date : ��Distribution : ADOORE Consortium�����Abstract : This document contains a reference manual to the GEN.LIB C++ version 1.0.7.�����Versions :����Status :�Date :�Observations & Modifications :��A

B����Validated

Work�31-01-97

30-09-97�User Manual related to the version 1.0.6

of the GEN.LIB

User Manual related to the version 1.0.7

of the GEN.LIB

���

CONTENTS

� Obsah \o "1-4" \t "Contents;1" �CONTENTS	� TLAČPŘEJÍTNA _Toc400428235 � ODKNASTR _Toc400428235 �3��

EXAMPLES	� TLAČPŘEJÍTNA _Toc400428236 � ODKNASTR _Toc400428236 �5��

FIGURES	� TLAČPŘEJÍTNA _Toc400428237 � ODKNASTR _Toc400428237 �7��

1. PRODUCT IDENTIFICATION	� TLAČPŘEJÍTNA _Toc400428238 � ODKNASTR _Toc400428238 �8��

1.1. Document Goal	� TLAČPŘEJÍTNA _Toc400428239 � ODKNASTR _Toc400428239 �8��

1.2. Definitions, Abbreviations and Terminology	� TLAČPŘEJÍTNA _Toc400428240 � ODKNASTR _Toc400428240 �8��

2. INSTALLATION GUIDE	� TLAČPŘEJÍTNA _Toc400428241 � ODKNASTR _Toc400428241 �9��

2.1. Environment Configuration	� TLAČPŘEJÍTNA _Toc400428242 � ODKNASTR _Toc400428242 �9��

2.1.1. Oracle Database Configuration	� TLAČPŘEJÍTNA _Toc400428243 � ODKNASTR _Toc400428243 �9��

2.1.2. C++ compiler configuration	� TLAČPŘEJÍTNA _Toc400428244 � ODKNASTR _Toc400428244 �9��

2.2. GEN.LIB installation	� TLAČPŘEJÍTNA _Toc400428245 � ODKNASTR _Toc400428245 �9��

2.3. Database configuration	� TLAČPŘEJÍTNA _Toc400428246 � ODKNASTR _Toc400428246 �12��

2.4. GEN.LIB built–in parameters	� TLAČPŘEJÍTNA _Toc400428247 � ODKNASTR _Toc400428247 �13��

2.5. Rebuilding of the shared GEN.LIB libraries and of the test applications	� TLAČPŘEJÍTNA _Toc400428248 � ODKNASTR _Toc400428248 �17��

2.5.1. Rebuilding of the run-time version of the GEN.LIB library	� TLAČPŘEJÍTNA _Toc400428249 � ODKNASTR _Toc400428249 �17��

2.5.2. Rebuilding of the testing version of the GEN.LIB library	� TLAČPŘEJÍTNA _Toc400428250 � ODKNASTR _Toc400428250 �18��

2.5.3. Rebuilding of the test applications library	� TLAČPŘEJÍTNA _Toc400428251 � ODKNASTR _Toc400428251 �18��

2.5.4. Rebuilding of the test applications	� TLAČPŘEJÍTNA _Toc400428252 � ODKNASTR _Toc400428252 �18��

2.6. Using GEN.LIB in application source files	� TLAČPŘEJÍTNA _Toc400428253 � ODKNASTR _Toc400428253 �19��

3. GEN.LIB USER MANUAL	� TLAČPŘEJÍTNA _Toc400428254 � ODKNASTR _Toc400428254 �20��

3.1. Global structure	� TLAČPŘEJÍTNA _Toc400428255 � ODKNASTR _Toc400428255 �20��

3.2. GEN.LIB Interface	� TLAČPŘEJÍTNA _Toc400428256 � ODKNASTR _Toc400428256 �20��

3.2.1. Initialisation	� TLAČPŘEJÍTNA _Toc400428257 � ODKNASTR _Toc400428257 �20��

3.2.2. Environment	� TLAČPŘEJÍTNA _Toc400428258 � ODKNASTR _Toc400428258 �21��

3.2.2.1. Update strategy	� TLAČPŘEJÍTNA _Toc400428259 � ODKNASTR _Toc400428259 �21��

3.2.2.2. Waiting strategy	� TLAČPŘEJÍTNA _Toc400428260 � ODKNASTR _Toc400428260 �22��

3.2.2.3. Locking strategy	� TLAČPŘEJÍTNA _Toc400428261 � ODKNASTR _Toc400428261 �23��

3.2.3. GEN.LIB Tracing	� TLAČPŘEJÍTNA _Toc400428262 � ODKNASTR _Toc400428262 �24��

3.2.3.1. How the tracing works	� TLAČPŘEJÍTNA _Toc400428263 � ODKNASTR _Toc400428263 �24��

3.2.3.2. How to use the tracing in the application	� TLAČPŘEJÍTNA _Toc400428264 � ODKNASTR _Toc400428264 �25��

3.2.4. Interface functions	� TLAČPŘEJÍTNA _Toc400428265 � ODKNASTR _Toc400428265 �26��

3.3. Database	� TLAČPŘEJÍTNA _Toc400428266 � ODKNASTR _Toc400428266 �26��

3.3.1. Definition of database dependent classes	� TLAČPŘEJÍTNA _Toc400428267 � ODKNASTR _Toc400428267 �26��

3.3.2. Creating of a database	� TLAČPŘEJÍTNA _Toc400428268 � ODKNASTR _Toc400428268 �26��

3.3.3. Connection to and disconnection from the database	� TLAČPŘEJÍTNA _Toc400428269 � ODKNASTR _Toc400428269 �27��

3.3.4. Direct access to the database using SQL	� TLAČPŘEJÍTNA _Toc400428270 � ODKNASTR _Toc400428270 �28��

3.3.5. Transaction control	� TLAČPŘEJÍTNA _Toc400428271 � ODKNASTR _Toc400428271 �30��

3.3.6. Object and table locking	� TLAČPŘEJÍTNA _Toc400428272 � ODKNASTR _Toc400428272 �31��

3.3.7. Database access using the GenLibInterface class	� TLAČPŘEJÍTNA _Toc400428273 � ODKNASTR _Toc400428273 �32��

3.4. Persistent classes and objects	� TLAČPŘEJÍTNA _Toc400428274 � ODKNASTR _Toc400428274 �33��

3.4.1. Constructing objects	� TLAČPŘEJÍTNA _Toc400428275 � ODKNASTR _Toc400428275 �33��

3.4.2. Defining classes for persistent objects	� TLAČPŘEJÍTNA _Toc400428276 � ODKNASTR _Toc400428276 �33��

3.4.2.1. DatabaseObject	� TLAČPŘEJÍTNA _Toc400428277 � ODKNASTR _Toc400428277 �33��

3.4.2.2. PersistentObject	� TLAČPŘEJÍTNA _Toc400428278 � ODKNASTR _Toc400428278 �33��

3.4.2.3. OIDBasedPersistentObject	� TLAČPŘEJÍTNA _Toc400428279 � ODKNASTR _Toc400428279 �34��

3.4.2.4. Object prototypes	� TLAČPŘEJÍTNA _Toc400428280 � ODKNASTR _Toc400428280 �34��

3.4.3. Deriving a new subclass of DatabaseObject class	� TLAČPŘEJÍTNA _Toc400428281 � ODKNASTR _Toc400428281 �35��

3.4.4. Deriving a new subclass of PersistentObject class	� TLAČPŘEJÍTNA _Toc400428282 � ODKNASTR _Toc400428282 �40��

3.4.5. Deriving a new subclass of OidBasedPersistentObject class	� TLAČPŘEJÍTNA _Toc400428283 � ODKNASTR _Toc400428283 �46��

3.5. Retrieving persistent objects from database	� TLAČPŘEJÍTNA _Toc400428284 � ODKNASTR _Toc400428284 �53��

3.5.1. Retrieving objects using Query and QueryResult classes	� TLAČPŘEJÍTNA _Toc400428285 � ODKNASTR _Toc400428285 �53��

3.5.2. Creating a Query object	� TLAČPŘEJÍTNA _Toc400428286 � ODKNASTR _Toc400428286 �53��

3.5.3. Executing a query	� TLAČPŘEJÍTNA _Toc400428287 � ODKNASTR _Toc400428287 �55��

3.5.4. Browsing a QueryResult	� TLAČPŘEJÍTNA _Toc400428288 � ODKNASTR _Toc400428288 �55��

3.5.5. Using database pointers	� TLAČPŘEJÍTNA _Toc400428289 � ODKNASTR _Toc400428289 �57��

3.5.6. Accessing object attributes and methods	� TLAČPŘEJÍTNA _Toc400428290 � ODKNASTR _Toc400428290 �57��

3.6. Manipulating polymorph results	� TLAČPŘEJÍTNA _Toc400428291 � ODKNASTR _Toc400428291 �58��

3.7. Creating, updating and deleting persistent objects	� TLAČPŘEJÍTNA _Toc400428292 � ODKNASTR _Toc400428292 �59��

3.7.1. Creating new objects in database	� TLAČPŘEJÍTNA _Toc400428293 � ODKNASTR _Toc400428293 �60��

3.7.2. Modifying objects	� TLAČPŘEJÍTNA _Toc400428294 � ODKNASTR _Toc400428294 �61��

3.7.3. Deleting objects	� TLAČPŘEJÍTNA _Toc400428295 � ODKNASTR _Toc400428295 �62��

3.7.4. Locking objects in the memory	� TLAČPŘEJÍTNA _Toc400428296 � ODKNASTR _Toc400428296 �63��

3.8. Relations	� TLAČPŘEJÍTNA _Toc400428297 � ODKNASTR _Toc400428297 �64��

3.8.1. Creating relations	� TLAČPŘEJÍTNA _Toc400428298 � ODKNASTR _Toc400428298 �65��

3.8.1.1. One to one relation	� TLAČPŘEJÍTNA _Toc400428299 � ODKNASTR _Toc400428299 �65��

3.8.1.2. One to many relation	� TLAČPŘEJÍTNA _Toc400428300 � ODKNASTR _Toc400428300 �67��

3.8.1.3. Many to many relation	� TLAČPŘEJÍTNA _Toc400428301 � ODKNASTR _Toc400428301 �68��

3.8.2. Relation Indexes and Integrity Constraints	� TLAČPŘEJÍTNA _Toc400428302 � ODKNASTR _Toc400428302 �70��

3.8.3. Browsing relations	� TLAČPŘEJÍTNA _Toc400428303 � ODKNASTR _Toc400428303 �70��

3.8.4. Inserting and deleting relations between objects	� TLAČPŘEJÍTNA _Toc400428304 � ODKNASTR _Toc400428304 �74��

3.9. Using Database Pointers for Direct Traversing Between Objects	� TLAČPŘEJÍTNA _Toc400428305 � ODKNASTR _Toc400428305 �76��

3.10. Exceptions, types and recovery	� TLAČPŘEJÍTNA _Toc400428306 � ODKNASTR _Toc400428306 �78��

3.11. Internal libraries	� TLAČPŘEJÍTNA _Toc400428307 � ODKNASTR _Toc400428307 �82��

�

�EXAMPLES

� Obsah \c "Example" �Example 1 - Using SQL*Plus to connect to the database	� TLAČPŘEJÍTNA _Toc380308081 � ODKNASTR _Toc380308081 �12��

Example 2 - Initialisation of the GenLib	� TLAČPŘEJÍTNA _Toc380308082 � ODKNASTR _Toc380308082 �21��

Example 3 - Setting of the update strategy	� TLAČPŘEJÍTNA _Toc380308083 � ODKNASTR _Toc380308083 �22��

Example 4 - Setting of the waiting strategy	� TLAČPŘEJÍTNA _Toc380308084 � ODKNASTR _Toc380308084 �23��

Example 5 - Setting of the locking strategy	� TLAČPŘEJÍTNA _Toc380308085 � ODKNASTR _Toc380308085 �24��

Example 6 - Tracing GEN.LIB SQL statements	� TLAČPŘEJÍTNA _Toc380308086 � ODKNASTR _Toc380308086 �25��

Example 7 - Assigning a database	� TLAČPŘEJÍTNA _Toc380308087 � ODKNASTR _Toc380308087 �27��

Example 8 - Connecting to the database	� TLAČPŘEJÍTNA _Toc380308088 � ODKNASTR _Toc380308088 �28��

Example 9 - Direct SQL statement execution	� TLAČPŘEJÍTNA _Toc380308089 � ODKNASTR _Toc380308089 �29��

Example 10 - Direct SQL statement execution	� TLAČPŘEJÍTNA _Toc380308090 � ODKNASTR _Toc380308090 �30��

Example 11 - Savepoints	� TLAČPŘEJÍTNA _Toc380308091 � ODKNASTR _Toc380308091 �30��

Example 12 - Database table locking	� TLAČPŘEJÍTNA _Toc380308092 � ODKNASTR _Toc380308092 �32��

Example 13 - Deriving a new subclass of DatabaseObject class	� TLAČPŘEJÍTNA _Toc380308093 � ODKNASTR _Toc380308093 �35��

Example 14 - Deriving a new subclass of DatabaseObject class	� TLAČPŘEJÍTNA _Toc380308094 � ODKNASTR _Toc380308094 �39��

Example 15 - Deriving a new subclass of DatabaseObject class	� TLAČPŘEJÍTNA _Toc380308095 � ODKNASTR _Toc380308095 �40��

Example 16 - Deriving a new subclass of PersistentObject class	� TLAČPŘEJÍTNA _Toc380308096 � ODKNASTR _Toc380308096 �41��

Example 17 - Deriving a new subclass of PersistentObject class	� TLAČPŘEJÍTNA _Toc380308097 � ODKNASTR _Toc380308097 �44��

Example 18 - Deriving a new subclass of PersistentObject class	� TLAČPŘEJÍTNA _Toc380308098 � ODKNASTR _Toc380308098 �46��

Example 19 - Deriving a new subclass of OidBasedPersistentObject class	� TLAČPŘEJÍTNA _Toc380308099 � ODKNASTR _Toc380308099 �47��

Example 20 - Deriving a new subclass of OidBasedPersistentObject class	� TLAČPŘEJÍTNA _Toc380308100 � ODKNASTR _Toc380308100 �49��

Example 21 - Deriving a new subclass of OidBasedPersistentObject class	� TLAČPŘEJÍTNA _Toc380308101 � ODKNASTR _Toc380308101 �50��

Example 22 - Deriving a new subclass of OidBasedPersistentObject class	� TLAČPŘEJÍTNA _Toc380308102 � ODKNASTR _Toc380308102 �50��

Example 23 - Deriving a new subclass of OidBasedPersistentObject class	� TLAČPŘEJÍTNA _Toc380308103 � ODKNASTR _Toc380308103 �50��

Example 24 - Deriving a new subclass of OidBasedPersistentObject class	� TLAČPŘEJÍTNA _Toc380308104 � ODKNASTR _Toc380308104 �51��

Example 25 - Deriving a new subclass of OidBasedPersistentObject class	� TLAČPŘEJÍTNA _Toc380308105 � ODKNASTR _Toc380308105 �51��

Example 26 - Deriving a new subclass of OidBasedPersistentObject class	� TLAČPŘEJÍTNA _Toc380308106 � ODKNASTR _Toc380308106 �51��

Example 27 - Deriving a new subclass of OidBasedPersistentObject class	� TLAČPŘEJÍTNA _Toc380308107 � ODKNASTR _Toc380308107 �51��

Example 28 - Deriving a new subclass of OidBasedPersistentObject class	� TLAČPŘEJÍTNA _Toc380308108 � ODKNASTR _Toc380308108 �53��

Example 29 - Queries	� TLAČPŘEJÍTNA _Toc380308109 � ODKNASTR _Toc380308109 �55��

Example 30 - Query results	� TLAČPŘEJÍTNA _Toc380308110 � ODKNASTR _Toc380308110 �55��

Example 31 - Browsing of query results	� TLAČPŘEJÍTNA _Toc380308111 � ODKNASTR _Toc380308111 �57��

Example 32 - Browsing of query results	� TLAČPŘEJÍTNA _Toc380308112 � ODKNASTR _Toc380308112 �58��

Example 33 - Using macros REF and PTR for browsing of query results	� TLAČPŘEJÍTNA _Toc380308113 � ODKNASTR _Toc380308113 �58��

Example 34 - Modifying persitent objects	� TLAČPŘEJÍTNA _Toc380308114 � ODKNASTR _Toc380308114 �61��

Example 35 - Refreshing persitent objects	� TLAČPŘEJÍTNA _Toc380308115 � ODKNASTR _Toc380308115 �61��

Example 36 - Modifying persitent objects	� TLAČPŘEJÍTNA _Toc380308116 � ODKNASTR _Toc380308116 �62��

Example 37 - Deleting persitent objects	� TLAČPŘEJÍTNA _Toc380308117 � ODKNASTR _Toc380308117 �63��

Example 38 - Locking persistent objects in memory	� TLAČPŘEJÍTNA _Toc380308118 � ODKNASTR _Toc380308118 �63��

Example 39 - Creating one to one relation	� TLAČPŘEJÍTNA _Toc380308119 � ODKNASTR _Toc380308119 �66��

Example 40 - Creating one to many relation	� TLAČPŘEJÍTNA _Toc380308120 � ODKNASTR _Toc380308120 �68��

Example 41 - Creating many to many relation	� TLAČPŘEJÍTNA _Toc380308121 � ODKNASTR _Toc380308121 �69��

Example 42 - Browsing relations	� TLAČPŘEJÍTNA _Toc380308122 � ODKNASTR _Toc380308122 �72��

Example 43 - Inserting couples to relations	� TLAČPŘEJÍTNA _Toc380308123 � ODKNASTR _Toc380308123 �75��

Example 44 - Deleting couples from relations	� TLAČPŘEJÍTNA _Toc380308124 � ODKNASTR _Toc380308124 �76��

Example 45 - Using Database Pointers for Direct Traversing	� TLAČPŘEJÍTNA _Toc380308125 � ODKNASTR _Toc380308125 �77��

Example 46 - Catching of GenLibException exception	� TLAČPŘEJÍTNA _Toc380308126 � ODKNASTR _Toc380308126 �79��

Example 47 - Catching of GenLibException_NotSupported exception	� TLAČPŘEJÍTNA _Toc380308127 � ODKNASTR _Toc380308127 �79��

Example 48 - Catching of GenLibException_ConnectionError exception	� TLAČPŘEJÍTNA _Toc380308128 � ODKNASTR _Toc380308128 �80��

Example 49 - Catching of GenLibException_SqlError exception	� TLAČPŘEJÍTNA _Toc380308129 � ODKNASTR _Toc380308129 �80��

Example 50 - Catching of GenLibException_DatabaseLock exception	� TLAČPŘEJÍTNA _Toc380308130 � ODKNASTR _Toc380308130 �81��

Example 51 - Catching of GenLibException_MemoryLock exception	� TLAČPŘEJÍTNA _Toc380308131 � ODKNASTR _Toc380308131 �81��

Example 52 - Catching of GenLibException_NoMemory exception	� TLAČPŘEJÍTNA _Toc380308132 � ODKNASTR _Toc380308132 �82��

Example 53 - Catching of GenLibException_NotFound exception	� TLAČPŘEJÍTNA _Toc380308133 � ODKNASTR _Toc380308133 �82��

Example 54 - Internal libraries - Strcpy() function	� TLAČPŘEJÍTNA _Toc380308134 � ODKNASTR _Toc380308134 �83��

Example 55 - Internal libraries - Strct function	� TLAČPŘEJÍTNA _Toc380308135 � ODKNASTR _Toc380308135 �83��

Example 56 - Internal libraries - Strcat() function	� TLAČPŘEJÍTNA _Toc380308136 � ODKNASTR _Toc380308136 �83��

Example 57 - Internal libraries - StrAnd() function	� TLAČPŘEJÍTNA _Toc380308137 � ODKNASTR _Toc380308137 �84��

Example 58 - Internal libraries - StrOr() function	� TLAČPŘEJÍTNA _Toc380308138 � ODKNASTR _Toc380308138 �84��

Example 59 - Internal libraries - StrNot() function	� TLAČPŘEJÍTNA _Toc380308139 � ODKNASTR _Toc380308139 �84��

Example 60 - Internal libraries - StrClause() function	� TLAČPŘEJÍTNA _Toc380308140 � ODKNASTR _Toc380308140 �85��

Example 61 - Internal libraries - StrSplit() function	� TLAČPŘEJÍTNA _Toc380308141 � ODKNASTR _Toc380308141 �85��

Example 62 - Internal libraries - StrPrefix() function	� TLAČPŘEJÍTNA _Toc380308142 � ODKNASTR _Toc380308142 �85��

Example 63 - Internal libraries - StrPrefixCut() function	� TLAČPŘEJÍTNA _Toc380308143 � ODKNASTR _Toc380308143 �86��

Example 64 - Internal libraries - LongToStr() function	� TLAČPŘEJÍTNA _Toc380308144 � ODKNASTR _Toc380308144 �86��

�

�Figures

� Obsah \c "Figure" �Figure 1 - Persistent objects hierarchy	� TLAČPŘEJÍTNA _Toc400417684 � ODKNASTR _Toc400417684 �33��

Figure 2 - Sample database structure	� TLAČPŘEJÍTNA _Toc400417685 � ODKNASTR _Toc400417685 �35��

Figure 3 OMT-relation	� TLAČPŘEJÍTNA _Toc400417686 � ODKNASTR _Toc400417686 �64��

Figure 4 - Class hierarchy for exceptions	� TLAČPŘEJÍTNA _Toc400417687 � ODKNASTR _Toc400417687 �78��

�

Product Identification

Document Goal

The goal of this document is to summarise main features of the GEN.LIB library and demonstrate its use in the C++ application.

This document describes first the environment conditions and settings required by the GEN.LIB applications. It also defines the database structure needed by the GEN.LIB itself to run.

In this manual you can find hpw to connect to the databases and communicate with them using SQL directly, how to derive and use new persistent classes and how to manipulate with the OMT�relations.

Definitions, Abbreviations and Terminology

GEN.LIB	General Library (name of the product)

SSR		Software Specification Report (Document ID: SDR01\CU\PRO61130\B)

SDR		System Design Report (Document ID: SDR01\CU\PRO61130\B)

Installation Guide

This section describes actions to be done to install GEN.LIB and to use it in the C++ applications.

Environment Configuration

Oracle Database Configuration

Before you can configure GEN.LIB itself, you should install and configure ORACLE client environment on the same machine. In order to be able to compile the GEN.LIB application, you should have at least ORACLE Pro*C precompiler components installed. Also SQL console named SQL*Plus is recommended. After the ORACLE installation, the root directory for the ORACLE software package is set in the variable $ORACLE_HOME.

If the oracle server is installed on the same machine, and you want to run GEN.LIB applications against this local database, the database system identification should be set in the $ORACLE_SID variable.

If you want running the GEN.LIB applications across the network, the specification of the default database should be set in the $TWO_TASK variable.

See ORACLE installation manuals for more details.

C++ compiler configuration

Correctly installed C++ compiler is required in order to rebuild the GEN.LIB library and to compile the applications.

Add following statements to your start-up script:

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/lib

export LD_LIBRARY_PATH

GEN.LIB installation

GEN.LIB version r.s.e (r = release number, s = sub–release number, e = edition number) is delivered in the tar file gl_r_s_e.tar. The current version is 1.0.7.

To install GEN.LIB, do following three steps:

move the tar file ql_s_r_e.tar to the desired directory. In the following text, this directory will be referred as /home/genlib.

Extract all files from the archive using command

$ tar xvf gl_s_r_e.tar

In the version 1.0.7 of GEN.LIB the statement should be

$ tar xvf gl_1_0_7.tar

After decompressing the tar�file, you should obtain the following directory structure in the /home/genlib directory:

./deliv	The directory for the delivered files

./deliv/1.0.7	The root directory for version 1.0.7 ...

./deliv/current -> ./deliv/1.0.7	... and the alias for this directory

./deliv/1.0.7/source	All source files structured in subdirectories

	according to design modules

./deliv/1.0.7/include	All header files

./deliv/1.0.7/lib	The compiled libraries

./deliv/1.0.7/work	The .cc and .c GEN.LIB files.

	GEN.LIB makefile

./deliv/1.0.7/testapp	All source files for derived persistent classes

	used in the integration and validation tests.

	Test application library makefile.

./deliv/1.0.7/itests	Integration tests source files and makefiles

./deliv/1.0.7/vtests	Validation tests source files and makefiles

./deliv/1.0.7/sql	SQL scripts

The ./deliv/1.0.7 subdirectory contains file

include.mk	Included to all other makefiles

	Contains variable definitions

	for making libraries

The ./deliv/1.0.7/sql subdirectory contains the following files

gl_ini.sql	The SQL script for creating all

	database tables needed

	by the GEN.LIB

gl_drop.sql	The SQL script for dropping all

	database tables needed

	by the GEN.LIB

tst_ini.sql	The SQL script for creating all

	database tables needed

	by the test applications included

	in the package.

	It can’t be executed before the gl_ini.sql script

tst_dpop.sql	The SQL script for dropping all

	database tables needed

	by the test applications included

	in the package.

	It must be executed before the gl_drop.sql script

The ./deliv/1.0.7/lib subdirectory contains three libraries and links to them:

libGenLib.so.1.0.7	Shared GEN.LIB version 1.0.7

libGenLib.so.1.0 -> libGenLib.so.1.0.7

libGenLib.so -> libGenLib.so.1.0.7

libGenLibT.so.1.0.7	Shared GEN.LIB version 1.0.7

	with the enabled tracing options.

	It allows GEN.LIB to log informations

	about invoked methods into the stdlog.txt file.

	It is linked to all test executables.

libGenLibT.so.1.0 -> libGenLibT.so.1.0.7

libGenLibT.so -> libGenLibT.so.1.0.7

libTestLib.so.1.0.7	Shared library with the compiled code

	for all test persistent classes derived

	from the GEN.LIB

	It is linked to all test executables.

libTestLib.so.1.0 -> libTestLib.so.1.0.7

libTestLib.so -> libTestLib.so.1.0.7

Adapt /home/genlib/deliv/1.0.7/include.mk makefile to match to your computer configuration:

If necessary, set values for following variables

COMPIL_C	=	CC	C compiler

COMPIL_C++	=	CC	C++ compiler

LINKER	=	CC	linker

AR	=	ar	ar

RANLIB	=	ranlib	ranlib

STRIP	=	strip	strip

GLHOME	=	/genlib/deliv	set to deliv subdirectory

			of the package installation

			/home/genlib/deliv

ORAHOME	=	/oracle_home	set to $ORACLE_HOME directory

A dd following statements to your start-up script:

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/genlib/lib

export LD_LIBRARY_PATH

Database configuration

Before you can start the GEN.LIB application, you need to prepare required database accounts in the database, and to create necessary tables and other database objects. To do this actions, connect to the Oracle server as any user with the DBA privilege. Integration and validation tests included in GEN.LIB package connect to the default database as user „ADOORE“ identified by password „ADOORE95“.

Test the database connectivity from your client computer. Try start SQL*PLUS using the command:

$ sqlplus your_database_user/your_database_password

Example � POŘ Example * ARABSKÉ �1� - Using SQL*Plus to connect to the database

$ sqlplus adoore/adoore95

GEN.LIB uses some database tables and sequences to store its internal data. These needed tables you can make by hand as described below.

Connect as the wanted database user

$ sqlplus adoore/adoore95

Create OID generator

SQL> CREATE SEQUENCE OID_GENERATOR

 MINVALUE 1

 MAXVALUE 999999999

 NOCYCLE

 ORDER;

Create version generator

SQL> CREATE SEQUENCE VERSION_GENERATOR

 MINVALUE 1

 MAXVALUE 999999

 CYCLE;

Create DUMMY table

SQL> CREATE TABLE DUMMY (

 X CHAR (1)

);

 INSERT INTO DUMMY

 VALUES (NULL);

Create OID_ROOT table

SQL> CREATE TABLE OID_ROOT ("

 OID NUMBER (9) NOT NULL PRIMARY KEY,

 VERSION NUMBER(6)"

);

 CREATE UNIQUE INDEX INX_OID_ROOT_OID

 ON OID_ROOT(OID);

Disconnect from the database.

SQL> EXIT;

You can do steps 2. to 5. by invoking the gl_init.sql script. From the SQL*Plus prompt execute the following command:

SQL> @/home/genlib/deliv/1.0.7/sql/gl_ini;

GEN.LIB built–in parameters

There are many parameters, which have an influence on the GEN.LIB behaviour and performance. Some of them you can change in the gl_defs.h header file. After change, you must rebuild the library to allow the changes to take effect. See section � ODK _Ref379266923 \n �2.5� for the information.

#define GENLIB_VERSION "1.0.7"				// Version info

defines version of the used GEN.LIB library as the string.

#define GENLIB_TEST_FRIEND void GenLib_Test_Procedure()

If defined, it defines the function, which is declared as a friend of all existing GEN.LIB classes.

Due to its usefulness for the debugging is this function used in all of the test programs.

NOTE: The GENLIB_TEST_FRIEND label is not defined in the standard gl_defs.h file, but is defined in the debug version of the file named gl_defs.h.T

#define TL_INFO		0x01

#define TL_INFO_SQL	0x02

#define TL_WARNING	0x08				// 0x04 is not used

#define TL_ERROR		0x20 		// 0x10 is not used

Binary masks for different levels of the debug messages.

Informative messages, noting that some method was invoked, finished, etc.

Information about SQL statement preparation, execution, etc.

Information about warnings generated during program execution

Information about errors generated during program execution

Each GEN.LIB debug message is assigned to one of the above defined groups.

#define GENLIB_TRACE_MASK (TL_INFO | TL_INFO_SQL | TL_WARNING | TL_ERROR)

Defines filter for the logged messages

If tracing is enabled (see GENLIB_TRACE label) messages belonging to one of the allowed groups are stored in the defined text file (see GENLIB_TRACE_FILE label)

#define GENLIB_TRACE_MASK_TTY	0x00

Defines filter for the messages sent to the standard output

If tracing is enabled (see GENLIB_TRACE label) messages belonging to one of the allowed groups are sent to a standard output.

#define GENLIB_TRACE // Tracing enabled

 #ifdef GENLIB_TRACE

	 #define GL_ESQLC_TRACE

	 #define GL_EXCPT_TRACE

	 #define GL_STR_TRACE

	 #define GM_DBDEP_TRACE

	 #ifdef GM_DBDEP_TRACE

		#define GC_CUR_TRACE

		#define GC_O7CUR_TRACE

		#define GC_DB_TRACE

		#define GC_O7DB_TRACE

		#define GC_DBC_TRACE

		#define GC_O7DBC_TRACE

		#endif //GM_DBDEP_TRACE

	 #define GM_DBIND_TRACE

	 #ifdef GM_DBIND_TRACE

		#define GM_BUFF_TRACE

		#ifdef GM_BUFF_TRACE

		 #define GC_BUFFI_TRACE

		 #define GC_OBUFF_TRACE

		 #endif //GM_BUFF_TRACE

		#define GM_PERS_TRACE

		#ifdef GM_PERS_TRACE

		 #define GC_OBJRF_TRACE

		 #define GC_DBOBJ_TRACE

		 #define GC_PEROB_TRACE

		 #define GC_OPROB_TRACE

		 #define GC_OBJID_TRACE

		 #define GC_DBPTR_TRACE

		 #endif //GM_PERS_TRACE

		#define GM_QUERY_TRACE

		#ifdef GM_QUERY_TRACE

		 #define GC_QUE_TRACE

		 #define GC_QUERE_TRACE

		 #define GC_REL_TRACE

		 #define GC_REL11_TRACE

		 #define GC_REL1N_TRACE

		 #define GC_RELNN_TRACE

		 #endif //GM_QUERY_TRACE

		#define GM_IFACE_TRACE

		#ifdef GM_IFACE_TRACE

		 #define GC_GLINT_TRACE

		 #endif //GM_IFACE_TRACE

		#endif //GM_DBIND_TRACE

	 #endif //GENLIB_TRACE

Collection of the defined labels for the GEN.LIB tracing control.

Labels correspond to source files, to modules, respectively to the whole library.

If the corresponding label is defined, debug messages in the given part of the GEN.LIB are produced.

If the corresponding label is not defined, debud information in the given part and all its sub�parts aren’t produced.

NOTE: The GENLIB_TRACE label is not defined in the standard gl_defs.h file, but is defined in the debug version of the file named gl_defs.h.T

#define GENLIB_TRACE_FILE "stdlog.txt" // name of standard log file

name of the log file

#define DEFAULT_LOCKING_STRATEGY LockingStrategy_None

#define DEFAULT_UPDATE_STRATEGY UpdateStrategy_OnDemand

#define DEFAULT_WAITING_STRATEGY WaitingStrategy_Nowait

Default strategies used by the GEN.LIB

Objects (database rows holding its data) are not locked when object is retrieved from the database

Objects changed in the application are propagated back to the database only when explicit request is sent either by the application, or by the GEN.LIB itself.

When object which should be changed are locked on the server from other connection, GEN.LIB will not wait and raise the exception GenLibException_DatabaseLock

#define MAX_CONNECTION 32

Maximal number of the existing connections in the GEN.LIB based application

#define MAX_CONNECTION_PER_DATABASE 16

Maximal number of connections in the GEN.LIB–based application connected to one database (note that each database server has its own limitation on total number of opened connections

#define AUTO_VIRTUAL_OBJECT_LOAD

If this label is defined, QueryResult instancies will automatically modify all retrieved instances of the DatabasePointer class to refer to correct subclass(es) of the class which executes the query.

If this label is not defined, QueryResult instancies will produce instances of the DatabasePointer class whose refer to the same class as the class which executes the query.

#define SQL_EXECUTION_VERSION_6 0x00

#define SQL_EXECUTION_VERSION_7 0x02

#define SQL_EXECUTION_NATIVE 0x01

#define SQL_EXECUTION_MODE SQL_EXECUTION_NATIVE

The SQL_EXECUTION_VERSION_6 label defines, that all statement have to be processed using the semantics defined for Oracle servers version 6.

The SQL_EXECUTION_VERSION_7 label defines, that all statement have to be processed using the semantics defined for Oracle servers version 7.

The SQL_EXECUTION_NATIVE label defines, that all statement have to be processed using the native semantics according to the version of the connected Oracle SQL server.

The SQL_EXECUTION_MODE defines the wanted semantics of the executed SQL statements on the server. All SQL statement sent to the server will require this semantics.

#define NO_DATABASE_CASCADE_DELETE

If this label is defined, GEN.LIB generates SQL DELETE statement for each table containing piece of the deleted object.

If this label is NOT defined, GEN.LIB generates SQL DELETE statement only for OID_ROOT table, and suppose, that all other pieces of the object will be deleted automatically on the server using cascade delete.

NOTE: This label is not defined (it is commented out) in the delivered version of the GEN.LIB

#define HASH_TABLE_SIZE 64

The size of the object buffer hash table belonging to one database connection.

The size of the complete hash table is sizeof(void *) * MAX_CONNECTION * HASH_TABLE_SIZE bytes

The minimal value is 1, maximal value is 256

#define MAX_OBJECTS_IN_BUFFER 512

Maximal number of objects allowed in the object buffer.

If the number is exceeded, buffer frees all object not locked in the memory to free its space

#define MAX_CLASS_NAME_LEN 64

Maximal length of the name of the table, associated with any of the persistent classes.

This name of the associated table is considered as the name of the class in the support of polymorphic collections (see � ODK _Ref400430869 \n �3.6�).

Rebuilding of the shared GEN.LIB libraries and of the test applications

User can create two modifications of the library. First of them named GenLib serves as run�time library for the real use inside the application. Second variant named GenLibT can be used for debuging purposes, because it generates (a lot of) information about its activitiy. Those two versions of the library differs in the label definitions inside the include/gl_defs.h header file.

The run�time version should use the include/gl_defs.h header file, but the testing version should use the include/gl_defs.h.T modification of the file. Those two files differs each from other only in two lines. The second one does not defines GENLIB_TRACE and GENLIB_TEST_FRIEND labels (see GEN.LIB built�in parameters).

Because all other source�files includes the gl_defs.h file, the GEN.LIB use the symbolic link gl_defs.h which links to the correct header�file according to current needs.

When last time the other modification of the library was built, it is necessary to remove all object (.o) files remaining from the last build and to link the correct gl_defs.h file.

When the same modification as in last time is needed, it is possible to make files only.

Rebuilding of the run-time version of the GEN.LIB library

Change the working directory to /home/genlib/deliv/1.0.7/work

$ cd /home/genlib/deliv/1.0.7/work

rebuild the run�time GEN.LIB (libGenLib.so.1.0.7)

complete rebuild after libGenLibT.so.1.0.7 generation

$ make_gl

repeated rebuild of the libGenLib.so.1.0.7

$ make -f genlib_s.mk

Rebuilding of the testing version of the GEN.LIB library

Change the working directory to /home/genlib/deliv/1.0.7/work

$ cd /home/genlib/deliv/1.0.7/work

rebuild the testing GEN.LIB (libGenLibT.so.1.0.7)

complete rebuild after libGenLib.so.1.0.7 generation

$ make_glt

repeated rebuild of the libGenLibT.so.1.0.7

$ make -f genlibts.mk

Rebuilding of the test applications library

All test applications link the libTestLib.so.1.0 library. This library contains the compiled code for all of the persistent classes derived from the GEN.LIB. If you haven’t compiled the test application library with the correct built–in parameters, build it first. The filename libTestLib.so.1.0 is a symbolic link to the file libTestLib.so.1.0.7.

Change the working directory to /home/genlib/deliv/1.0.7/testapp

$ cd /home/genlib/deliv/1.0.7/testapp

rebuild the test application library (libTestLib.so.1.0.7)

$ make -f testapps.mk

Rebuilding of the test applications

If both the GEN.LIB and test application libraries are up–todate, you can compile the test programs:

Change to the correct directory to:

/home/genlib/deliv/1.0.7/itests for the integration tests

$ cd /home/genlib/deliv/1.0.7/itests

resp.

/home/genlib/deliv/1.0.7/vtests for the validation tests

$ cd /home/genlib/deliv/1.0.7/vtests

Make the test application _testnnn where nnn is in range from 001 to 033 for the integration tests and from 000 to 026 for the validation tests.

$ make -f makennn

Using GEN.LIB in application source files

In your source or header files which use the library, include the genlib.h header file using the

#include <genlib.h>

directive.

In addition to compiling other ORACLE-based application:

compile the object files with the -I/home/genlib/deliv/1.0.7/include option.

link your application with the -L/home/genlib/deliv/1.0.7/lib -lGenLib options

GEN.LIB user manual

GEN.LIB is a general library which provides an interface between the application, based on OMT, and SQL database engine for the persistent data storage. Both GEN.LIB and application are supposed to be developed using C++ programming language.

GEN.LIB is a library which manages the persistency of application domain objects using relational database servers. Moreover, it presents rows of external (by other application maintained) tables as C++ objects.

Global structure

The GEN.LIB library consists of two parts - a database dependent part and a database independent part. The database independent part consists of an Interface Module, Persistent Object Module, Query Module and Buffer Module. For a detailed description see SDR sec. 2.2, 2.3.

GEN.LIB Interface

The basic interface for the communication between the application and the database is provided by the instancies of the GenLibInterface class. This class is defined in the Interface Module. This class provides functions for allocating, initialising and releasing used resources and memory structures, functions for communication with the database, functions for manipulating with persistent objects and functions for setting the application environment (see section 3.8. in SDR).

A default instance GenLib of the GenLibInterface class is declared in GenLibInterface Module in the file gc_glint.h and any application can use it. There is no necessary (but possible) to create any other instance of this class in the application.

class GenLibInterface GenLib;

Initialisation

To allocate resources used by the GEN.LIB class library it must be initialised first through the GenLibInterface.

The main() function in an application using GEN.LIB class library must initialise it by calling GenLib.Init() method. This method must be called before any other action with the database.

Function GenLib.Close() is used to close the GenLib interface and free all resources allocated by the library. It should be called before the end of the program.

Example � POŘ Example * ARABSKÉ �2� - Initialisation of the GenLib

#include <genlib.h>

int main()

{	

	(void)GenLib.Init();

	...

	...	main() function code

	...

	(void) GenLib.Close();

	return 0;

};

Environment

The following GEN.LIB environment properties can be set using the Interface Module.

Update strategy

The update strategy determines the way how the updated objects are written into the database. Changes can be either propagated immediately to the database or they can be deferred and written to the database explicitly by calling the object’s Update() method.

There are defined following type and constants for the update strategy settings in the GEN.LIB:

enum UpdateStrategy { //UpdateStrategy type definition

 US_Default = 0,

 UpdateStrategy_Default = US_Default,

 US_Current = 1,

 UpdateStrategy_Current = US_Current,

 US_OnDemand = 2,

 UpdateStrategy_OnDemand = US_OnDemand,

 US_Immediately = 3,

 UpdateStrategy_Immediately = US_Immediately

 };

The demanded update strategy can be set by the following GenLibInterface class methods.

BOOL GenLibInterface::SetUpdateStrategy(enum UpdateStrategy anUpdateStrategy);

Sets the UpdateStrategy. Update strategy can be set to US_OnDemand or US_Immediately. Setting the update strategy to the US_Default sets the built–in default update strategy (see � ODK _Ref400329352 \n �2.4�). Setting the update strategy to the US_Current does nothing in this version of the library.

BOOL GenLibInterface::WriteBackImmediately();

Switch default setting, whether updated objects have to be written to the database immediately.

This method is equivalent with the GenlibInterface::SetUpdateStrategy(US_Immediately) method.

BOOL GenLibInterface::WriteBackOnDemand();

Switch setting, whether updated objects have to be written to the database only on demand.

This method is equivalent with the GenlibInterface::SetUpdateStrategy(US_OnDemand) method

enum UpdateStrategy GenLibInterface::CurrentUpdateStrategy() const;

Returns the current setting of the UpdateStrategy.

Example � POŘ Example * ARABSKÉ �3� - Setting of the update strategy

enum UpdateStrategy UStrategy;

UStrategy=GenLib.CurrentUpdateStrategy();// get the current strategy

GenLib.WriteBackImmediately();		// set strategy to US_Immediately

Waiting strategy

Waiting strategy identifies the strategy used when the corresponding rows or tables of a persistent object are locked in the database. Either an error can occur or the object which tries to access the data from the database will wait until the data is unlocked.

There are defined following type and constants for the waiting strategy settings in the GEN.LIB:

enum WaitingStrategy { //WaitingStrategy type definition

 WS_Default = 0,

 WaitingStrategy_Default = WS_Default,

 WS_Current = 1,

 WaitingStrategy_Current = WS_Current,

 WS_Nowait = 2,

 WaitingStrategy_Nowait = WS_Nowait,

 WS_Error = WS_Nowait,

 WaitingStrategy_Error = WS_Nowait,

 WS_Wait = 3,

 WaitingStrategy_Wait = WS_Wait

 };

The demanded waiting strategy can be set by the following GenLibInterface class methods.

BOOL GenLibInterface::SetWaitingStrategy(enum WaitingStrategy aWaitingStrategy);

Sets the waiting strategy. Waiting strategy can be set to WS_Wait or WS_Error. Setting the waiting strategy to the WS_Default sets the built–in default waiting strategy. Setting the waiting strategy to the WS_Current does nothing in this version of the library.

BOOL GenLibInterface::WaitWhenLock();

Sets the default waiting strategy to wait when the application tries to lock the table or row of data already locked by another connection.

An application will wait until the existing database lock is released and then locks the data itself.

This method is equivalent with the GenlibInterface::SetWaitingStrategy(WS_Wait) method.

BOOL GenLibInterface::ErrorWhenLock();

Sets the default waiting strategy to raise an exception when the application tries to lock the table or row of data already locked by another connection.

An application will raire an GenLibException_DatabaseLock exception, if the database table or row of data is already locked from another connection.

This method is equivalent with the GenlibInterface::SetWaitingStrategy(WS_Error) method.

enum WaitingStrategy GenLibInterface::CurrentWaitingStrategy() const;

Returns the current waiting strategy.

Example � POŘ Example * ARABSKÉ �4� - Setting of the waiting strategy

enum WaitingStrategy WStrategy;

WStrategy=GenLib.CurrentWaitingStrategy(); // get the current strategy

GenLib.ErrorWhenLock();				 // set strategy to WS_Error

Locking strategy

The object (when it loads data from the database) locks a table row either in none, shared or exclusive mode.

There are defined following type and constants for the locking strategy settings in the GEN.LIB:

enum LockingStrategy { //LockingStrategy type definition

 LS_Default = 0,

 LockingStrategy_Default = LS_Default,

 LS_Current = 1,

 LockingStrategy_Current = LS_Current,

 LS_None = 2,

 LockingStrategy_None = LS_None,

 LS_Shared = 3,

 LockingStrategy_Shared = LS_Shared,

 LS_Exclusive = 4,

 LockingStrategy_Exclusive = LS_Exclusive

 };

The demanded locking strategy can be set by the following GenLibInterface class method.

BOOL GenLibInterface::SetLockingStrategy(enum LockingStrategy aLockingStrategy);

Sets default locking strategy that the object should use when it loads itself from the database. The locking strategy can be set to LS_None, LS_Shared or LS_Exclusive. Setting the locking strategy to the LS_Default sets the built–in default locking strategy. Setting the locking strategy to the LS_Current does nothing in this version of the library.

The locking strategy is used for a row locking and for a table locking.

The row locking takes place, whenever the object is retrieved from the database. Only LS_None and LS_Exclusive strategies works with the row locking. The LS_Shared strategy works the same way as the LS_None strategy for a row locking.

The table locking is used only if the application calls the DatabaseObject::LockTable() method explicitly. Table locking uses all three levels of locking. See section � ODK _Ref379954455 \n �3.3.5� for a LockTable() method explanation.

enum LockingStrategy GenLibInterface::SetLockingStrategy() const;

Returns the current locking strategy.

Each object derived from the DatabaseObject class has its own setting of all strategies. The above functions set the default values that are assigned to the newly created and retrieved objects.

Example � POŘ Example * ARABSKÉ �5� - Setting of the locking strategy

enum LockingStrategy LStrategy;

LStrategy=GenLib.CurrentLockingStrategy(); // get the current strategy

GenLib.SetLockingStrategy(LS_Exclusive);	 // set strategy to LS_Exclusive

GEN.LIB Tracing

How the tracing works

The GEN.LIB library provides the user many possibilities how to control trace information produced by the GEN.LIB. Depending on the trace level different amount of tracing messages appear in a log file or on the standard output (or both).

The availability, resp. the unavailability of the GEN.LIB tracing features are determined by the *_TRACE labels. See section � ODK _Ref380305134 \n �2.4� for list of all possible labels. The main label is the label GENLIB_TRACE. If this label is defined, it is possible to use functions logmsg(const char *) and its overloaded variants for the activity log.

In addition to the main label GENLIB_TRACE, other labels control amount of the generated information. If the label for the concrete GEN.LIB module, submodule, or class is defined, library creates the tracing information for the given part of the GEN.LIB. It is possible to produce information about PersistentObject class activities only, about activities inside the DatabaseDependent module only, and so on.

Each line of the tracing informations belongs to one of predefined groups. The following pre-processor tracing group constants are defined in the GEN.LIB:

TL_INFO		0x01

Information about invoking and finishing GEN.LIB methods

TL_INFO_SQL	0x02

Information about executed SQL statements

TL_WARNING	0x08

Warnings

TL_ERROR	0x20

Errors, information about raising GEN.LIB exceptions.

GEN.LIB uses function logmsg(const int grp, const char *msg) and its variants for message generation. Two binary masks - one for the output to the text file and second for the output to the standard output - are then used to filter amount of the stored information. Only messages belonging to the allowed groups are sent to the log file, or to the standard output. The control mask variables are:

int GenlibTraceMask

controls the log file output

int GenlibTraceMaskTTY

controls the standard output

Original values of those two variables is set to predefined built–in constants GENLIB_TRACE_MASK and GENLIB_TRACE_MASK_TTY (see � ODK _Ref400330017 \n �2.4�).

The name of the log file is set in the predefined built–in constant GENLIB_TRACE_FILE (see � ODK _Ref400330017 \n �2.4�).

How to use the tracing in the application

First, the tracing must be allowed. User can define wanted set of the *_TRACE labels (at least the GENLIB_TRACE label must be defined). After changing the gl_defs.h file the GEN.LIB must be recompiled.

After making the program, run it and see the log file for needed information. The default name of the log file is stdlog.txt.

Example � POŘ Example * ARABSKÉ �6� - Tracing GEN.LIB SQL statements

The user wants to see the SQL statement executed on some concrete place of the program.

Define at least the GENLIB_TRACE (main trace label) and the GM_DBDEP_TRACE (database dependent module trace) labels. Set the GENLIB_TRACE_MASK and GENLIB_TRACE_MASK_TTY constants to the value 0x00.

Before and after tested section add the statements, changing the values of the tracing masks. The code should look like:

#ifdef GENLIB_TRACE

GenlibTraceMask = TL_INFO_SQL | TL_ERROR; //output to the file

#endif

//here is(are) the statement(s) to be traced

#ifdef GENLIB_TRACE

GenlibTraceMask = 0x00; //no output allowed

#endif

This approach produce only small log file which contains needed information about important part of the program.

Instead of the above mentioned code, the user can set the build–in constant GENLIB_TRACE_MASK to the “TL_INFO_SQL | TL_ERROR“ value, and then use the following code:

#ifdef GENLIB_TRACE

logmsg(TL_INFO_SQL, “HERE-IT-BEGINS”); //easy to find in the log file

#endif

//here is(are) the statement(s) to be traced

#ifdef GENLIB_TRACE

logmsg(TL_INFO_SQL, “HERE-IT-ENDS”); //easy to find in the log file

#endif

The second version produce large amount of the information about all of the executed SQL statements, binding variables, etc. The important part of the log file is enclosed between lines containing “HERE-IT-BEGINS” and ”HERE-IT-ENDS” strings, which are easy to find.

Interface functions

The GenLibInterface class provides other methods to manipulate databases, database connections and persistent objects. These methods allow performing different actions through the GenLib Interface. Most of this methods simply call the appropriate method of the object passed as a parameter. For more details see SDR sec. 3.8.1.

Database

Definition of database dependent classes

The DatabaseDependent module implements three classes: Database, DatabaseConnection and Cursor. These classes represent an abstraction of the database server, of the connection to the database server and of the database cursor. Each of those three classes should have one descendant, which implements the code for the communication with one family of database servers. In GEN.LIB the classes Oracle7Database, Oracle7DatabaseConnection and Oracle7Cursor for accessing of the Oracle7 database servers are implemented.

Creating of a database

Each real database server which should be accessible from the application must be represented internally as the instance of the Database class.

This instance must be created by calling the Database::Database() constructor followed by the calling of the Database::Assign(char *ConnectString). First the instance is created in the application memory, then this instance is assigned to correspoding real server. More precisely the constructor of the corresponding derived class which call the Database constructor must be called. For the ORACLE 7 database servers the corresponding constructor is Oracle7Database::Oracle7Database(). To obtain an assigned instance of the database class in one step, it is possible to call the constructor Oracle7Database::Oracle7Database(char *ConnectString). The connect string must have a form required by the SQL*Net (a network communication protocol used between the Oracle servers and clients). The correct syntax of the connect strings for the SQL*Net version 2 is simply a string containing the name of the database.

If the connect string is empty, or the instance of the Database class was not assigned, the client tries to connect to the default database. See section � ODK _Ref379866796 \n �2.1.1� for information about the default database settings.

Example � POŘ Example * ARABSKÉ �7� - Assigning a database

class Oracle7Database SampleDatabase("");

// Default database

class Oracle7Database SampleDatabase;

SampleDatabase.Assign("adoore_db");

// Database adoore_db

class Oracle7Database SampleDatabase("adoore_db");

// Database adoore_db

The SQL*Net protocol uses the tnsnames.ora file to translate the form necessary for the successfull client-server communication.

The fragment of the tnsnames.ora file defining the adoore_db database can look like:

adoore_db =

 (DESCRIPTION =

 (ADDRESS_LIST =

 (ADDRESS =

 (COMMUNITY = TCP.ms.mff.cuni.cz)

 (PROTOCOL = TCP)

 (Host = athos.ms.mff.cuni.cz)

 (Port = 1526)

)

)

 (CONNECT_DATA =

 (SID = DB1)

 (GLOBAL_NAME = DB1.ms.mff.cuni.cz)

)

)

This file as well as the other SQL*Net configuration files are stored in the /var/opt/oracle directory, or in the $ORACLE_HOME/network/admin directory. See Oracle administration documentation for the detailed SQL*Net protocol settings.

Connection to and disconnection from the database

A connection to the particular database can be created by executing the Connect(const char *username, const char *password) method of the Database class. This method returns a pointer to a new DatabaseConnection instance.

Example � POŘ Example * ARABSKÉ �8� - Connecting to the database

DatabaseConnection *DbCon = NULL;

 printf("Connecting to the database as user \"adoore\" ...\n");

 try {

	DbCon = SampleDatabase.Connect("adoore","adoore95");

	}

 catch (GenLibException &X) {

	printf("... NOT connected\n");

	throw;

	};

 printf("... successfully connected\n");

Each DatabaseConnection object represents one database connection. It provides functions for manipulating with the data in database. Each persistent object (i.e. object that was read from or written to the database) has it’s associated database connection. Notice that there can be more connections to one physical database.

The user can close the database connection by calling the DatabaseConnection::Disconnect() method.

	DbCon -> Disconnect();

This method sends a COMMIT command to the database before closing the connection. To disconnect without committing the database the method DatabaseConnection::Abort() can be used.

	DbCon -> Abort();

For details about Database and DatabaseConnection classes see SDR sections 3.5.1, 3.5.3 .

Direct access to the database using SQL

The relational database can be accessed by GEN.LIB application via C++ objects. The SQL commands which manipulate these object in database are constructed and executed automatically by object methods hidden to the user.

GEN.LIB also provides a direct way of communication with the database using SQL commands written by the user.

These commands can be sent and executed by the DatabaseConnection class using the DatabaseConnection::Sql(...) method or the << operator. These methods are defined as follows.

virtual BOOL DatabaseConnection::Sql(const char *SqlCommand);

The given SQL statement is executed using the given database connection.

virtual DatabaseConnection & DatabaseConnection::operator << (const char *SqlCommand);

This method is equivalent to the above defined method.

DatabaseConnection &operator << (const class Cmd &Command);

Sends a command specified by the object derived from the GENLIB class Cmd to the connection.

Example � POŘ Example * ARABSKÉ �9� - Direct SQL statement execution

DbCon->Sql("CREATE TABLE OID_ROOT (

		OID NUMBER (6) NOT NULL PRIMARY KEY,

		VERSION NUMBER(6))");

The above statement is equivalent to :

*DbCon <<	"CREATE TABLE OID_ROOT ("

		"OID NUMBER (6) NOT NULL PRIMARY KEY,"

		"VERSION NUMBER(6)"

		")";

And also to:

*DbCon <<	CmdSql(

			"CREATE TABLE OID_ROOT ("

			"OID NUMBER (6) NOT NULL PRIMARY KEY,"

			"VERSION NUMBER(6)"

			")"

);

Before the execution of this function all objects stored in memory from the same database are updated to assure a consistent state of database.

Some basic database commands are available as predefined sub�classes of the Cmd class. These classes are:

CmdSql class

use CmdSql(const char *SqlCommand) constructor for creating instances

CmdCommit class

use CmdCommit() constructor for creating instances,

CmdRollback class

use CmdRollback() constructor for creating instances,

CmdSavepoint class

use CmdSavepoint(const char *Name) constructor for creating instances,

CmdRollbackToSavepoint class

use CmdRollbackToSavepoint(const char *Name) constructor for creating instances

Instances of these classes can be sent directly to the database using the << operator and can be used together with ordinary SQL commands sent as a string. This mechanism provides an easy way of direct communication with the database. For detailed information about command classes see SDR section 3.4.

Example � POŘ Example * ARABSKÉ �10� - Direct SQL statement execution

*DbCon<< "CREATE TABLE EMPLOYEES ("

 "OID NUMBER (6) "

 "NOT NULL PRIMARY KEY REFERENCES OID_ROOT(OID) ON DELETE CASCADE,"

 "NAME CHAR (32),"

 "SALARY NUMBER (5)"

 ")"

	<< SqlCmd("CREATE UNIQUE INDEX INX_EMPLOYEES_OID ON EMPLOYEES(OID)")

	<< CmdCommit();

Transaction control

The DatabaseConnection class defines functions for managing database transactions.

virtual BOOL DatabaseConnection::Commit();

Finishing and accepting the transaction. It means the saving the objects from the memory to the database and the request to the database to commit. This function can be issued also by using the command „<< CmdCommit()“.

virtual BOOL DatabaseConnection::Rollback();

Transaction rollback to the state at the beginning of the transaction, removing all the copies of the persistent objects from the memory and requesting the database to rollback. This function can be issued also by using the command „<< CmdRollback()“.

virtual BOOL DatabaseConnection::Savepoint(const char *Name);

Inserts a savepoint of the given name into the current transaction. This function can be issued also by using the command „<< CmdSavepoint(char *)“.

virtual BOOL DatabaseConnection::RollbackToSavepoint(const char *Name);

Database rollback to savepoint of the given name. The changes made between Savepoint(Name) and the current state of the database are cancelled. This function can be issued also by using the command „<< CmdRollbackToSavepoint(char *)“.

Example � POŘ Example * ARABSKÉ �11� - Savepoints

Oracle7Database SampleDatabase("");

DatabaseConnection *DbCon = NULL;

DbCon = SampleDatabase.Connect("adoore","adoore95");

// insert a new employee

DbCon->Sql(

 "INSERT INTO EMPLOYEES (OID,NAME,SALARY) "

 "VALUES (1,\’Grieg \’,2000)"

);

// put savepoint

DbCon->Savepoint("sp1");

// change salary

DbCon->Sql("UPDATE EMPLOYEES SET SALARY=15000 WHERE OID=1");

// rollback to savepoint sp1

DbCon->RollbackToSavepoint("sp1");

// commit database

DbCon->Commit();

the same piece of the program can be also written using the << operator

Oracle7Database SampleDatabase("");

DatabaseConnection *DbCon = NULL;

DbCon = SampleDatabase.Connect("adoore","adoore95");

// insert a new employee

DbCon << "INSERT INTO EMPLOYEES (OID,NAME,SALARY) "

 "VALUES (1, \’Grieg\’,20000)"

// put savepoint

 << CmdSavepoint("sp1")

// change salary

 << "UPDATE EMPLOYEES SET SALARY=15000 WHERE OID=1"

// rollback to savepoint sp1

 << CmdRollbackToSavepoint("sp1")

// commit database

 << CmdCommit();

Object and table locking

Objects are locked in the database according to the settings of the LockingStrategy (see � ODK _Ref400336160 \n �3.2.2.3�). If the LockingStrategy is set to LS_None or LS_Shared, the retrieved objects are not locked in the database. The rows containing object data are locked exclusively at the time the changes on the object instance are propagated back to the database. Until commiting of the connection, all other connections will read old data and attempt to change them from those connections (and therefore to lock rows exclusively) will detected by the server. If the LockingStrategy is set to LS_Exclusive all rows containing the retrieved instance will be exclusively locked in time of retrieving. Detected colisions with other connections will be solved according to setting of the WaitingStrategy parameter. If the WaitingStrategy is set to WS_Wait, the process communicating through the second connection will be suspended until the first connection release locks on the table row. If the WaitingStrategy is set to WS_Nowait, the process communicating through the second connection raises the GenLibException_DatabaseLock exception.

Moreover, the DatabaseObject class defines methods for table–level locking.

virtual BOOL DatabaseObject::LockTable();

virtual BOOL DatabaseObject::LockTable(

	enum LockingStrategy aLockingStrategy,

	enum WaitingStrategy aWaitingStrategy

);

These two methods will try to lock the whole table associated with the class in the database. If the table is already locked and the WS_NoWait strategy was chosen, the method raises the exception GenLibException_DatabaseLock else the process will wait untill previous lock on the table is released. The following two exaples show using of the LockTable method for the coordination of processes inside critical region of the code.

Example � POŘ Example * ARABSKÉ �12� - Database table locking, wait

Semaphore_class.LockTable(LS_Exclusive,LS_Wait); // try to lock table

 // exclusively and wait

/*

Critical section of the code.

No other connection can do the same think at the same time.

*/

DbCon.Commit(); // release the lock

Example � POŘ Example * ARABSKÉ �13� - Database table locking, nowait

GenLib.Init();

try {

 Semaphore_class.LockTable(LS_Exclusive,LS_Nowait); // try to lock table

 // exclusively

 }

catch (GenLibException_DatabaseLock &X) {

 printf("Sorry, there can be only one ...\n"

 GenLib.Close();

 return 1;

 }

/*

There is only one instance of this program running on the database

*/

GenLib.Close();

return 0;

Database access using the GenLibInterface class

Another way to access the data in the database is through the GenLibInterface class.

For this purpose the GenLibInterface class provides the following functions. For the more detailed description see SDR section 3.8.1.

BOOL GenLibInterface::Sql(char *SqlCommand, class DatabaseConnection &DbConn);

Sends an SQL query to the given database connection.

BOOL GenLibInterface::Commit(DatabaseConnection &DbConn);

Sends a COMMIT command to the given database connection.

 BOOL GenLibInterface::Rollback(DatabaseConnection &DbConn);

Sends a ROLLBACK command to the given database connection.

BOOL GenLibInterface::Savepoint(DatabaseConnection &DbConn, char *Name);

Inserts a savepoint of given name into the current transaction running on the given database connection.

BOOL GenLibInterface::RollbackToSavepoint(DatabaseConnection &DbConn, char *Name);

A transaction, running on the given database connection is rolled back to the savepoint of the given name.

Persistent classes and objects

Constructing objects

Each class has its constructor and destructor. Some initialisation methods were proposed in the previous version of documentation, but now each class has the code for construction (destruction) it in (from) the memory and for initialisation (shutdown) in its constructor (destructor). Usually we left the initialisation (shutdown) methods. They are called from the constructors (resp. destructors).

Defining classes for persistent objects

GEN.LIB provides three base classes for maintaining object persistency : DatabaseObject class, PersistentObject class and OIDBasedPersistentObject class. These are abstract classes and all user defined classes for persistent object should be derived from these classes.

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �1� - Persistent objects hierarchy

DatabaseObject

Descendants of this class can be used to access data resulted from any SQL select statement. They can represent any projection onto some columns of join of any number of database tables. They can be resulted from a complex SQL query, they allow to use GROUP BY and HAVING clauses and aggregate function operators.

This type of objects serves for read-only access to the database. Instances retrieved from the database are not persistent. They can be changed after retrieving from the database, but changes will not be propagated back into database.

PersistentObject

Descendants of this class provide access to standard database tables. The structure of the class (i.e. it’s attributes) must be constructed according to the existing table. All persistent attributes of an object must correspond with some column of only one database table. Each class instance correspond to one row in a specified database table. Using of GROUP BY and HAVING clauses, aggregate function operators is not allowed.

Object changes are propagated to an appropriate row of database table.

OIDBasedPersistentObject

Descendants of this class act as real persistent objects, which use relational database to achieve their own persistency. Each instance of OIDBasedPersistentObject class and it’s descendants is identified by a unique OID. The structure of database tables must be defined to correspond to the class structure. OidBasedPersistentObject class supports generalisation-specialisation hierarchy of classes. More hierarchy levels of derived classes can be defined. Each derived class is responsible only for mapping, load and store of its own attributes to one database table. For handling with attributes of its predecessors, parent methods can be called.

The structure of a relational database tables required for the classes derived from the OIDBasedPersistentObject class will be described later in this document.

For more detailed description of persistent object classes see SDR sec. 3.7.2, 3.7.3, 3.7.4.

When defining a new class, definition of the corresponding new subclass of DatabasePointer, QueryResult or Relation is not needed.

Object prototypes

Prototypes of objects were introduced to provide static-like functions and services of classes. This decrease the number of the functions, which should be redefined by the user of the library. Prototypes also serve as object templates while constructing database pointers and relations between objects.

It’s suggested to name these prototypes NameOfTheClass_class, where NameOfTheClass is the class name.

The following sections describe the way how to define classes for maintaining persistent objects. All examples use the following class hierarchy.

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �2� - Sample database structure

Deriving a new subclass of DatabaseObject class

It is supposed, that there are tables defined in the database, and the user wants to access the data, representing rows of the result of some complicated query, which collects data from a number of tables. Each row of the result should appear as one object instance inside the application. This section describes how to define appropriate C++ class to maintain such type of data in the application.

For every class derived from the DatabaseObject class the parts of the corresponding SQL query must be specified (i. e. names of database tables, attributes and functions which have to be selected, select conditions, grouping, bind variables).

External (global) variables corresponding to selected columns must be defined. These variables are used as bind variables in embedded SQL commands sent to the database. It is recommended, that these variables should be either global or static within the class.

Example � POŘ Example * ARABSKÉ �14� - Deriving a new subclass of DatabaseObject class

Let suppose the tables

WORKERS(

	OID NUMBER (9) NOT NULL PRIMARY KEY,

	NAME CHAR (32),

	TRADES_NAME CHAR (32)

)

TRADES(

	NAME CHAR (32) NOT NULLPRIMARY KEY

	 ADDRESS CHAR (64]

)

are defined in the database and also suppose we want to obtain the trade names, together with the number of workers in each trade. The corresponding SQL query would be :

SELECT TRADES.NAME, COUNT(WORKERS.OID)

FROM WORKERS, TRADES

WHERE WORKERS.TRADES_NAME=TRADES.NAME

GROUP BY TRADES.NAME

HAVING COUNT(WORKERS.OID) > 5;

This query could be represented in the application by the following class:

file TradeWorkers.h:

class TradeWorkers : public DatabaseObject

{

private :

static char SQL_TradeName[];	// static variables used as Into variables in

static int SQL_Count;		// SQL statements

char * 	_TradeName;		// variables corresponding to selected 	

int 		_Count;		// columns

public :

	TradeWorkers();		// constructor

	~ TradeWorkers();		// destructor

...					// other methods

};

A global empty (constant) instance of every new class must be defined as a prototype.

extern const class TradeWorkers TradeWorkers_class;

// A global empty (constant) instance of every new class

// must be defined as a prototype.

file TradeWorkers.cc:

char TradeWorkers::SQL_TradeName[33]; //32 character string

 //+1 null character to terminate

int TradeWorkers::SQL_Count;

const class TradeWorkers TradeWorkers_class; //The prototype

Inherited virtual methods that must be redefined

virtual BOOL _ImportAttributes();

Private method which copies global variables into attributes of an object.

This method should be overwritten in a subclass which adds new attributes.

virtual class DatabaseObject * _New() const ;

Constructs a new empty transient variant of the same type as the referenced object (the constructed object is not stored in the database). This method need not perform the tests, if the new object can be created in the memory. This test is done by the calling function New().

Usually this method will contain only C++ command new with the name of the new class as an argument.

virtual const class DatabaseObject *Prototype() const;

Returns a pointer to a prototype instance of the referenced class.

The two following methods provide information necessary for the binding of C++ variables to table columns in SQL statements.

virtual int DatabaseFieldsCount() const;

Must return the number of the attributes (which are associated with the database table columns) added by the referenced class. For more details See DatabaseObject:: DatabaseFieldsCount() description in SDR.

virtual void DatabaseFieldInfo(int i, void *&addr, char &ctype, int &clen);

Takes an integer i (which means the sequential number of the attribute) as the input and returns the address of the associated memory variable, the type of the C variable, and the length of the associated memory variable (buffer). To each type of C++ corresponds one character. Supported types are:

‘c’	char

‘s’	char *

‘i’	int

‘u’	unsigned int

‘l’	long

 ‘f ’	float

‘d’	double

This method must be redefined by the user. If the user rewrites this method to return zero as the value of clen parameter, then the proper length is set according to size of the required type automatically. The string variables must return the maximal length of the string, and the associated buffer must be at least one character longer (for trailing ‘\0’ character).

Conversions between the internal (C++) and the external (database) data representation is done automatically by the server if possible. There is no possibility to convert the string“GEN.LIB“ to number but the string “1234“ is compatible with a number. Conversion from the longer string type to shorter one causes its truncation.

The following methods are used for constructing the SQL commands which are sent to the database.

virtual char *SelectClause() const;

This method should return the names of the attributes of a database object, i.e. columns from SELECT clause of the SQL query.

virtual char *FromClause() const ;

This method should return the table names from the FROM clause of the SQL query, which constructs an object.

virtual char *IntoClause() const;

This method should return a string containing the list of SQL variables from the INTO clause of the SQL query, which constructs the object. The names must begin with colons and must be separated by commas. Their names can not begin with the underscore.

Inherited virtual methods that may be redefined, (the inherited methods return an empty string)

virtual char *WhereClause() const;

This method can be used to specify the condition placed in the WHERE clause of the SQL query. Only those rows which meet with this condition are retrieved as objects from database. This method should return a string (possibly empty) containing the condition.

If this string is not empty and someone executes on this class a query which selects only specified rows using some additional condition, the WhereClause() is concatenated with WHERE clause in used query via AND operator.

virtual char *GroupByClause() const;

This method can add a GROUP BY clause of the SQL query, which constructs objects of this class. It should return a string containing a list of database column names. When an empty string is returned no GROUP BY clause is added.

virtual char *HavingClause() const;

This method can add a condition used in the HAVING clause of the SQL query, which constructs the object. It should return a string containing the condition. When an empty string is returned no HAVING clause is added.

Example � POŘ Example * ARABSKÉ �15� - Deriving a new subclass of DatabaseObject class

BOOL TradeWorkers::_ImportAttributes()

		{

		Strcpy(_TradeName, SQL_TradeName);

		_Count = SQL_Count;

		return TRUE;

		};

See section � ODK _Ref379871541 \n �3.11� for the description of the Strexp(char *, char *) function.

// ---------------

virtual class DatabaseObject * TradeWorkers::_New()	

		{

 return new TradeWorkers;

 };

// ---------------

const class DatabaseObject * TradeWorkers::Prototype() const

 {

		return & TradeWorkers_class;

 };

// ---------------

virtual class DatabaseObject * TradeWorkers:: DatabaseFieldsCount()	

		{return 2;};

// ---------------

void TradeWorkers::DatabaseFieldInfo(

	int i,

	void *&addr,

	char &ctype,

	int &clen

) const

{	

	switch (i) {

		case 1:

			addr = TradeWorkers::SQL_TradeName;

			ctype = 's'; 	//string

			clen = 32;	// suppose the trade name is a 32 character 					// string

			break;

		case 2:

			addr = &TradeWorkers::SQL_Count;

			ctype = 'i'; 	//int

			clen = 0;

			break;

	};

// ---------------

virtual char *TradeWorkers ::SelectClause() const

		{return " TRADES.NAME, COUNT(WORKERS.OID)";};

// ---------------

virtual char * TradeWorkers :: FromClause() const	

		{return " WORKERS, TRADES";};

// ---------------

virtual char * TradeWorkers :: IntoClause() const

		{return " :SQL_TradeName, :SQL_Count ";};

// ---------------

virtual char * TradeWorkers ::WhereClause() const	

		{ return "(WORKERS.TRADES_NAME=TRADES.NAME)"; };

// ---------------

virtual char * TradeWorkers::GroupByClause() const

		{ return "TRADES.NAME";};

// ---------------

virtual char * TradeWorkers::HavingClause() const

		{ return "COUNT(WORKERS.OID)>5";};

Other methods

Other methods, such as methods providing access to object attributes, can be defined by the user.

Example � POŘ Example * ARABSKÉ �16� - Deriving a new subclass of DatabaseObject class

char * TradeWorkers::TradeName() const

		{ return _TradeName;};

int TradeWorkers::Count() { return _Count; };

Deriving a new subclass of PersistentObject class

It is supposed, that there is a table defined in the database, and the user wants to access the rows of this table. Each row of the table should appear as one object instance inside the application. No all columns of this table need to be selected, but the subset of selected columns must contain the primary key. This section describes how to define appropriate C++ class to maintain such type of data in the application.

For every class derived from the PersistentObject class the user must provide the name of a database table which stores the objects and the names of database columns corresponding to attributes of this class. PersistentObjects are identified by values of their key attributes (not by OIDs). The names of the key attributes and corresponding database columns must be specified.

External (global) variables corresponding to selected columns must be defined. These variables are used as bind variables in embedded SQL commands sent to the database. It is recommended, that these variables should be either global or static within the class.

Destructor of each class must call a _Free() method at its beginning. This method unregisters object from the object buffer and stores its values to the database, if necessary, before the object is destroyed. After calling the _Free() method object can start other activities.

Example � POŘ Example * ARABSKÉ �17� - Deriving a new subclass of PersistentObject class

Let suppose the table

TRADES(

	NAME CHAR (32) NOT NULL PRIMARY KEY,

	ADDRESS CHAR (64)

)

in the database. A Trades class which works with rows of this table as with objects could look as follows :

file Trades.h:

class Trades : public PersistentObject

{

private :

	static char _SQL_Name[];		// static variables used as Into

	static float _SQL_Address[];		// variables in SQL statements

char * _Name;					// variables corresponding to

char * _Address;					// selected columns

public: :

	Trades();		// constructor

	~Trades ();		// destructor

	...			// other methods

};

extern const class Trades Trades_class;

// A global empty (constant) instance of every new class

// must be defined as a prototype.

file Trades.cc:

char Trades::_SQL_Name[33];		// static variables used as Into

char Trades::_SQL_Address[65];	// variables in SQL statements

 // +1 character for terminating null

const class Trades Trades_class; // prototype

Inherited virtual methods that must be redefined

virtual BOOL _ExportAttributes() const;

Private method which copies attributes of an object into global variables known to the SQL communication part of GEN.LIB.

This method should be overwritten in a subclass which adds new attributes.

virtual BOOL _ImportAttributes();

Private method which copies global variables into attributes of an object.

This method should be overwritten in a subclass which adds new attributes.

virtual BOOL _ImportPointerAttributes(

	ObjectReference *DbPtr, DatabaseConnection *aConnection) const;

Private method which fills-in the given database pointer from the global key variables.

virtual class DatabaseObject * _New() const ;

Constructs a new empty transient variant of the same type as the referenced object (the constructed object is not stored in the database). This method need not perform the tests, whether the new object can be created in the memory. This test is done by the calling function New().

Usually this method will contain only C++ command new with the name of the new class as an argument.

virtual const class DatabaseObject *Prototype() const;

Returns a pointer to a prototype instance of the referenced class.

The two following methods must be defined for each new subclass. They provide information necessary for the binding of C++ variables to table columns in SQL statements.

virtual int DatabaseFieldsCount() const;

This method must return the number of the attributes (which are associated with the database table columns) added by the referenced class. For more details See DatabaseObject:: DatabaseFieldsCount() description in SDR.

virtual void DatabaseFieldInfo(int i, void *&addr, char &ctype, int &clen);

This method provides necessary information about bind variables. For more details see section � ODK _Ref379872092 \n �3.4.3� with DatabaseObjects::DatabaseFieldInfo() description.

The following methods are used for constructing the SQL commands which are sent to the database.

virtual char *SelectClause() const;

This method should return the names of the attributes of a database object, i.e. columns from SELECT clause of the SQL query.

virtual char *FromClause() const ;

This method should return the table names from the FROM clause of the SQL query, which constructs an object.

virtual char *IntoClause() const;

This method should return a string containing the list of SQL variables from the INTO clause of the SQL query, which constructs the object. The names must begin with colons and must be separated by commas. They can not begin with the underscore.

The SQL variables names need not be the same as names of corresponding global (or static) variables.

virtual char *SelectKeyClause() const;

This method should return the names of the key columns, which will be used to identify the object. For descendants of PersistentObject class, i.e. objects corresponding to the rows of the relational database table, this method should return the set of key columns of this table.

virtual char * IntoKeyClause() const;

This method should return the names of the SQL variables associated with the key columns of the object. The names begin with colons and are separated by commas. Those symbolic names can not begin with the underscore.

The SQL variables names need not be the same as names of corresponding global (or static) variables.

virtual char *SelectKeyValues() const ;

This method should return a list of key values identifying the object. The values are separated by commas.

Inherited virtual methods that may be redefined

virtual BOOL _PostLoad();

Private virtual method executed immediately after a database object is loaded from the database.

It may be overridden by programmer to provide an additional functionality.

Inherited virtual methods that must not be redefined	

The following methods of PersistentObject class are defined to return an empty string and should not be redefined.

virtual char *WhereClause() const ;

virtual char *GroupByClause() const;

virtual char *HavingClause() const;

Example � POŘ Example * ARABSKÉ �18� - Deriving a new subclass of PersistentObject class

BOOL Trades::_ExportAttributes() const

	{

	Strexp(Trades::_SQL_Name, _Name, 16);

	Strexp(Trades::_SQL_Address, _Address, 64);

	return TRUE;

	};

See section � ODK _Ref379871541 \n �3.11� for the description of the Strexp(char *, char *) function.

// ---------------

BOOL Trades::_ImportAttributes()

	{

	Strcpy(_Name, Trades ::_SQL_Name);

	Strcpy(_Address, Trades ::_SQL_Address);

	return TRUE;

	};

See section � ODK _Ref379871541 \n �3.11� for the description of the Strcpy(char *, char *) function.

// ---------------

BOOL Trades::_ImportPointerAttributes(ObjectReference *DbPtr,

		DatabaseConnection *aConnection) const

	{

	...

	char *value = NULL;

	Strcat(value,3,"'",Trades ::_SQL_Name,"'");

	// set name in quotas into value

	((DatabasePointer *)DbPtr)->Init(aConnection,Prototype(),value);

	// fills in a DatabasePointer instance

	...

	} ;

See section � ODK _Ref379871541 \n �3.11� for the description of the Strcat(char *, int n, char *, ...) function.

// ---------------

virtual class DatabaseObject * Trades ::_New()	{return new Trades;};

// ---------------

const class DatabaseObject * Trades ::Prototype() const

			 { return & Trades_class;};

// ---------------

virtual class DatabaseObject * Trades::DatabaseFieldsCount()	

		{return 2;};

// ---------------

void Trades::DatabaseFieldInfo(int i, void *&addr, char &ctype, int &clen) const

{	switch (i) {

		case 1:

			addr = TestPersistentObject1::_SQL_Name;

			ctype = 's'; 	//string

			clen = 16;

			break;

		case 2:

			addr = TestPersistentObject1::_SQL_Address;

			ctype = 's';	 //string

			clen = 64;

			break;

		};

};

// ---------------

virtual char *Trades::SelectClause() const {

	return "TRADES.NAME, TRADES.ADDRESS";};

// ---------------

	virtual char *Trades::FromClause() const {return "TRADES"; };

// ---------------

	virtual char * Trades::IntoClause() const

					{ return ":SQL_Name, :SQL_Address";};

// ---------------

	virtual char * Trades::SelectKeyClause() const

					{ return "TRADES.NAME";};

// ---------------

	virtual char * Trades::IntoKeyClause() const { return ":SQL_Name";};

// ---------------

	virtual char *SelectKeyValues() const {

		char *ret = NULL;

		Strcat(ret,3,"'",_Name,"'");	// returns a copy of _Name string

		return ret;

		};

Other methods

Other methods, such as methods providing access to object attributes and relations, can be defined by the user.

Example � POŘ Example * ARABSKÉ �19� - Deriving a new subclass of PersistentObject class

char *Trades::GetAddress() const {

		return _Address;

		};

BOOL Workers::ChangeAddress(const char *const aAddress) {

		Strcpy(_Address, aAddress);

		return MarkAsDirty();

		};

See section � ODK _Ref379871541 \n �3.11� for the description of the Strcpy(char *, int n, char *, ...) function.

Deriving a new subclass of OidBasedPersistentObject class

Descendants of this class represent real persistent objects. Instances of these classes are identified by a unique OID. In contrast to descendants of PersistentObject and DatabaseObject classes, classes derived from OidBasedPersistentObject class can form a hierarchy. In case of DatabaseObject and PersistentObject classes, the classes are created to fit to format of some existing table or to format of the result of concrete select statement. On the other hand, the descendants of the OidBasedPersistentObjects class are defined first, and it is necessary to create database tables according to them.

Each OidBasedPersistentObject subclass is associated to one table in the relational database. The OidBasedPersistentObject class itself is associated with the table named OID_ROOT. All attribute values of each instance of the OidBasedPersistentObject subclass are stored in the tables associated with the given subclass and its parents up to OidBasedPersistentObject.

For every class derived from the PersistentObject class the user must provide the name of a database table which stores the objects and the names of database columns corresponding to attributes of this class. PersistentObjects are identified by values of their key attributes (not by OIDs). The names of the key attributes and corresponding database columns must be specified.

Let suppose the Employee class derived from the OidBasedPersistentObject class directly and associated with the EMPLOYEE table in the database. Instances of the Employee class are stored in OID_ROOT and EMPLOYEES tables. To obtain all attributes of the Employee class instance, both tables must be joined together. To allow correct join of all pieces of one object from the database, all associated tables must have defined a column OID. This column should be defined as NUMBER(9) PRIMARY KEY column (the same type as the OID column in the OID_ROOT table). To speed–up the join operation, a UNIQUE INDEX on the OID column of each table should be created.

Because an OID column of newly created table refers to the OID column of the table associated with the parent class, it is useful to express this fact in the database explicitly by adding clause “REFERENCES name_of_parent_table(OID)“ to the OID column definition.

If the database cascade delete feature is wanted to be used, additional clause “ON DELETE CASCADE“ must be added to the OID column definition. See section � ODK _Ref380219519 \n �2.4� for information how to enable a cascade delete feature.

Table associated with the given class must have defined (except the OID column) one additional column for each attribute added by the given class. Column types must be compatible with the type of the attribute.

Each attribute defined in the class must have defined one global variable (static variable defined inside the same class is recommended) which is used as a buffer for a database communication. Each class must have defined also one variable defined for OID attribute, even this attribute is declared in the OidBasedPersistentObject class only.

To keep data consistent, each attribute should be accessed via two access method, one for reading and one for changing the value of the attribute. The access method for changing attribute must call the MarkAsDirty() method before its finish. This method marks the object in memory as a dirty object, which is written back to the database before the occupied memory is released.

A prototype instance for the OidBasedPersistentObject class is defined in the gc_oprob.h file inside a persistent module:

const class OidBasedPersistentObject OidBasedPersistentObject_class;

Methods of a new subclass handle only attributes of this class. Most methods that must be redefined in derived classes should call the appropriate method of the superclass.

Example � POŘ Example * ARABSKÉ �20� - Deriving a new subclass of OidBasedPersistentObject class

The following two classes Employees and Workers class represent examples of classes derived from OidBasedPersistentObject class. Employees class is a direct descendant of OidBasedPersistentObject class, Workers class is derived from the Employees class.

file Employees.h:

class Employees : public OidBasedPersistentObject

{

protected :

	static long _SQL_E_OID;		// static variables used as Into

	static char _SQL_Name[];	// variables in SQL statements

	static int _SQL_Salary;

char *_Name;			// object attributes

int _Salary;

public :

	Employees();		// constructor

	~ Employees();		// destructor

	... 				// other methods

 	char *Name();		// Access methods

	BOOL Name(char *);	// for _Name

	int Salary();		// and _Salary

	BOOL Salary(int);		// attributes

};

const class Employees Employees_class;

// global (constant) instance of the Employee class

file Workers.h:

class Workers : public Employees

{

protected :

	static long _SQL_W_OID;		// static variables used as Into

	static char _SQL_Qualification[];	// variables in SQL statements

char *_Qualification;		// object attributes

public::

	Workers();		// constructor

	~ Workers();	// destructor

	... 			// other methods

	char * Qualification();		// Access methods

	BOOL Qualification(char *);	// for _Qualification

};

	

const class Workers Workers_class;

// global (constant) instance of the Employee class

The corresponding database structure would be :

OID_ROOT(

 OID NUMBER (9) PRIMARY KEY,

 VERSION NUMBER (9)

)

EMPLOYEES(

 OID NUMBER (9) PRIMARY KEY REFERENCES OID_ROOT(OID) ON DELETE CASCADE,

 NAME CHAR (32),

 SALARY NUMBER (5)

)

WORKERS(

 OID NUMBER (9) PRIMARY KEY REFERENCES EMPLOYEES(OID) ON DELETE CASCADE,

 QUAL CHAR (64)

 }

Inherited virtual methods that must be redefined

virtual BOOL _ExportAttributes() const;

Private method which copies new attributes of an object (those attributes that were added by the derived class) and the OID attribute into global variables known to the SQL communication part of GEN.LIB.

This method must call the _ExportAttributes() method of the superclass to copy the appropriate superclass attributes.

Example � POŘ Example * ARABSKÉ �21� - Deriving a new subclass of OidBasedPersistentObject class

BOOL Employees::_ExportAttributes() const

{

	Employees::_SQL_E_OID = OID();

	Strexp(Employees::_SQL_Name,_Name,32);

	Employees::_SQL_Salary = Salary();		// access function returning 								//_Salary

	return OidBasedPersistentObject::_ExportAttributes();

	};

BOOL Workers::_ExportAttributes() const

{

	Workers::_SQL_W_OID = OID();

	Strexp(Workers::_SQL_Qualification,_Qualification,16);

	return Employees::_ExportAttributes();

	};

virtual BOOL _ImportAttributes();

Private method which copies global variables into attributes of an object. Only for attributes that were added by the derived class.

This method must call the _ImportAttributes() method of the superclass to copy the appropriate superclass attributes.

Example � POŘ Example * ARABSKÉ �22� - Deriving a new subclass of OidBasedPersistentObject class

BOOL Employees::_ImportAttributes()

{

	_Name = Strcpy(_Name,Employees::_SQL_Name);

	_Salary = Employees::_SQL_Salary;

	return OidBasedPersistentObject::_ImportAttributes();

	};

BOOL Workers::_ImportAttributes()

{

	_Qualification = Strcpy(_Qualification,Workers::_SQL_Qualification);

	return Employees::_ImportAttributes();

	};

virtual class DatabaseObject * _New() const ;

Constructs a new empty transient variant of the same type as the referenced object. See PersistentObject::_New().

Example � POŘ Example * ARABSKÉ �23� - Deriving a new subclass of OidBasedPersistentObject class

	virtual class DatabaseObject *Employees::_New() const

				{ return new Employees;};

	virtual class DatabaseObject *Workers::_New() const

					{ return new Workers;};

virtual const class DatabaseObject *Prototype() const;

Returns a pointer to a prototype instance of the referenced class.

Example � POŘ Example * ARABSKÉ �24� - Deriving a new subclass of OidBasedPersistentObject class

const class DatabaseObject *Employees::Prototype() const

					{ return &Employees_class; };

const class DatabaseObject *Workers::Prototype() const

					{ return &Workers_class; };

virtual const class DatabaseObject *ParentPrototype() const;

Returns a pointer to a prototype instance of the parent of the referenced class. If the derived class is a direct descendant of OidBasedPersistentObject class, this method should return pointer to OidBasedPersistentObject_class instance.

Example � POŘ Example * ARABSKÉ �25� - Deriving a new subclass of OidBasedPersistentObject class

const class DatabaseObject *Employees::ParentPrototype() const {

	return OidBasedPersistentObject::Prototype(); };

const class DatabaseObject *Workers::ParentPrototype() const {

	return Employees::Prototype(); };

The following methods are used for constructing the SQL commands which are sent to the database.

virtual char *SelectClause() const;

This virtual method returns the names of the attributes of a database object, i.e. columns from SELECT clause of the SQL query. The list must contain attributes added by the class and the OID attribute.

Example � POŘ Example * ARABSKÉ �26� - Deriving a new subclass of OidBasedPersistentObject class

virtual char *Employees::SelectClause() const

	{return "EMPLOYEES.OID, EMPLOYEES.NAME, EMPLOYEES.SALARY";};

virtual char *Workers::SelectClause() const

	{return "WORKERS.OID, WORKERS.QUAL";};

virtual char *FromClause() const ;

Table names from the FROM clause of the SQL query, which constructs an object.

Example � POŘ Example * ARABSKÉ �27� - Deriving a new subclass of OidBasedPersistentObject class

virtual char *Employees::FromClause() const {return "EMPLOYEES";};

virtual char *Employees::FromClause() const {return "WORKERS";};

virtual char *IntoClause() const;

SQL variables from the INTO clause of the SQL query, which constructs the object. The names must begin with colons and must be separated by commas. They can not begin with the underscore. . The list must contain attributes added by the class and the OID attribute.

The SQL variables names need not be the same as names of corresponding global (or static) variables.

Example � POŘ Example * ARABSKÉ �28� - Deriving a new subclass of OidBasedPersistentObject class

virtual char *Employees::IntoClause() const

		 {return ":SQL_E_OID, :SQL_Name, :SQL_Salary";};

virtual char *Workers::IntoClause() const

		 {return ":SQL_W_OID, :SQL_Qualification";};

virtual int DatabaseFieldsCount() const;

This method must return the number of the added by the referenced class (plus one for the _OID attribute). For more details See DatabaseObject:: DatabaseFieldsCount() description in SDR.

virtual void DatabaseFieldInfo(int i, void *&addr, char &ctype, int &clen);

This method provides necessary information about bind variables corresponding to new attributes(including the bind variable for the _OID attribute). For detailed description see DatabaseObject::DatabaseFieldInfo().

Virtual methods that may be redefined

virtual BOOL _PostLoad();

Private virtual method executed immediately after a database object is loaded from the database.

It may be overridden by programmer to provide an additional functionality.

Virtual methods that must not be redefined	

The following methods of OIDBasedPersistentObject class are defined to return an empty string and should not be redefined.

virtual char *WhereClause() const ;

virtual char *GroupByClause() const;

virtual char *HavingClause() const;

The following methods return information about the key attributes. In OidBasedPersistentObject OID is always used as the key attribute. These methods are already defined in OIDBasedPersistentObject class and should not be redefined.

virtual char *SelectKeyClause() const;

virtual char *IntoKeyClause() const;

virtual char *SelectKeyValues() const ;

Other methods

Other methods, such as methods providing access to object attributes and relations, can be defined by the user.

Example � POŘ Example * ARABSKÉ �29� - Deriving a new subclass of OidBasedPersistentObject class

char *Workers::Qualification() const {

		return _Qualification;

		};

BOOL Workers::Qualification(const char *const aQualification) {

		Strcpy(_Qualification, aQualification);

		return MarkAsDirty();

		};

Retrieving persistent objects from database

GEN.LIB allows two ways of creating persistent objects. The first way is to read an object from the database. All objects retrieved from the database are persistent.

The second way is to first create an object in memory (as a transient object) and then make it persistent by writing it to the database.

Retrieving objects using Query and QueryResult classes

While starting the application no pointer to stored data is known. The only way how to obtain first data from the database at the start time of the application is reading it by using a SQL query. Having at least one object (or its pointer) known, the application can start usual process of spreading activity by traversing from object to object using associations between the instances of the object classes.

While reading first objects from the database, the following steps must be executed. (Suppose that corresponding object classes are already defined.)

Create a new Query

Execute the Query using a class prototype

Browse the QueryResult to get object values

Creating a Query object

Objects of class Query represent a query to the database which searches for objects of the specified class. In a query the user can specify a condition which must be satisfied by searched objects. This condition is added (via the AND operator) to the default WHERE clause of the corresponding class. Sorting conditions can be also specified in a query. This conditions are added by an ORDER BY clause to the SQL query.

A query object is independent on the persistent object classes and can be potentially executed on each of this classes (i.e. descendants of DatabaseObject, PersistentObject and OidBasedPersistentObject classes). The database columns used in a query condition must, of course, match the table columns used for the specified class.

A Query class defines four constructors.

Query();

Constructs a Query without condition.

Query (const char *const a_where);

Constructor for an unsorted query. The a_where parameter sets the query condition.

Query (const char *const a_where, const char *const a_order_by);

Constructor for sorted query. The a_order_by parameter sets the ORDER BY clause.

Query (const Query &const X);

Copy constructor for Query instance. It sets both the WHERE and the ORDER_BY clause.

Query &Query::Operator =(const Query & X);

Copy operator on Query class. Both the WHERE and the ORDER_BY clauses are copied.

Existing Queries can be combined into Queries with more complex conditions by using the following methods and operators. For detailed specification see SDR sec. 3.9.5

Query &Not();

Query operator !() const;

Change the query condition to its negation.

Query &Or(const Query & const Q);

Query operator ||(const Query & const Q) const;

Provide disjunction of two queries. The resulting condition consists of conditions of original queries concatenated with OR.

Query &And(const Query & const Q);

Query operator &&(const Query & const Q) const;

Provide conjunction of two queries. The resulting condition consists of conditions of original queries concatenated with AND.

WHERE and ORDER BY conditions are stored in the Query instance and can be accessed using following methods (for details see SDR sec. 3.9.5).

char *Where() const;

Returns WHERE clause hold by the query.

BOOL Where(const char * const a_where);

Sets WHERE clause of the query. Where clause of the query is concatenated (through AND operator) with the where clause of the object to which the query is sent.

char *OrderBy() const;

Returns the ORDER BY clause hold by the Query.

BOOL OrderBy(const char * const a_order_by);

Sets the ORDER BY clause hold by the Query.

A constant instance of the Query class with the name ALL is defined in GEN.LIB. This Query object retrieves all objects of the desired persistent object class. Both the WHERE and the ORDER BY fragments are defined as empty stings inside this special constant.

const class Query ALL;

Example � POŘ Example * ARABSKÉ �30� - Queries

// create new Query from class Workers which selects workers

// whose names start with "P"

Query Q1("EMPLOYEES.NAME like 'P%'");

// create new Query from class Workers which selects workers salaries

// higher than 10000

Query Q2("EMPLOYEES.SALARY > 10000");

// change the first Query to find workers that satisfy both conditions

Q1.And(Q2); /* Equivalent to Q1 = Q1 && Q2; */

// the result should be sorted by salary

Q1.OrderBy("EMPLOYEES.SALARY ASC");

// create a Query that retrieves Workers with salary higher than 10000

// or lower than 8000

Query Q3("EMPLOYEES.SALARY < 8000");

Q3.Or(Q2); /* Equivalent to Q3 = Q3 || Q2; */

Executing a query

After constructing a Query instance, the objects can be obtained from the database by executing this query. The QueryResult *DatabaseObject::ExecuteQuery(const Query &Q, class DatabaseConnection *DbCon) method must be called for the corresponding persistent object class.

An existing Query and DatabaseConnection instances are passed to this method as arguments. IT returns an instance of the QueryResult class. This QueryResult object has not any relationship to the Query object. QueryResult keeps all necessary information to access all retrieved objects.

The Query Result is a collection of objects, respective a collection of DatabasePointers. The items of the result must be consistent with the queryfied object type.

Query can be sent to an arbitrary instance of the class including prototype, the functionality will be the same. Even no regular instances of the required type are available, the prototype instance can be used for this purpose.

Example � POŘ Example * ARABSKÉ �31� - Query results

QueryResult *QR = Workers_class.ExecuteQuery(Q1, DbCon);

Browsing a QueryResult

A query result can be searched as a collection of items. Each item identify unique resulting object (i.e. an instance of the DatabaseObject directly, or an object identification in case of descendants of PersistentObject or OidBasedPersistentObject classes).

Each QueryResult object holds it’s database connection, the SQL command with which it was created and a pointer to the prototype of the selected class (to issue virtuality).

To start searching the QueryResult, the QueryResul::Open() method must be called first. This causes the stored SQL command to be executed. The DatabaseObject::ExecuteQuery(...) calls this method automatically so the user needs to call it only to reexecute the SQL command (for example to refresh the QueryResult) or after closing the QueryResult.

The following methods can be use to browse a QueryResult.

long Count();

Returns the number of the items in the collection.

BOOL Prev();

Sets the index to the previous object in the collection. It returns TRUE if the setting was successful, otherwise it returns FALSE.

BOOL Next();

Sets the index to the next object in the collection. It returns TRUE, if the setting was successful, otherwise it returns FALSE.

BOOL First();

Sets the index to the first object in the collection. It returns TRUE, if the setting was successful, otherwise it returns FALSE.

BOOL Last();

Sets the index to the last object in the collection. It returns TRUE, if the setting was successful, otherwise it returns FALSE.

BOOL IsOnFirst();

Returns TRUE, if the index points to the first item of the collection, otherwise it returns FALSE.

BOOL IsOnLast();

Returns TRUE, if the index points to the last item of the collection, otherwise it returns FALSE.

virtual class ObjectReference *Get();

Returns the reference to the resulted object on the position given by the index (by the position of the database cursor in the result).

Returns a pointer instead of the reference (as was written in the previous version of the document).

virtual class ObjectReference *GetNext();

Sets the index to the next object in the collection. If succeeds, returns the reference to the resulted object on the position given by the index (by the position of the database cursor in the result).

BOOL GoToPosition (long Pos);

Sets the index to the given position. Next calling of Get returns the Pos-th item of the collection.

long Position();

Returns the current value of the index.

The QueryResult must be closed (by calling QueryResult::Close()) after finishing the work with it. When QueryResult is closed, no operation except Open() can be invoked on it.

For more details about QueryResult methods see SDR sec. 3.9.7.

Example � POŘ Example * ARABSKÉ �32� - Browsing of query results

while (QR->Next())

{

...

DbPtr = (DatabasePointer *)QR->Get();

...

};

QR->Close();				// close result set

QR->Open();					// open the result once again

If (QR->GoToPosition(5))		// go to the 5th position

	DbPtr = (DatabasePointer *)QR->Get();

...

QR->Close();				// close result set

Using database pointers

The purpose of database pointers (instances of DatabasePointer class) is to provide access to persistent object attributes and methods independently on the fact whether the related object is currently presented in the memory or if only its relational representation is available.

A pointer to the database points to one object loaded through a specific database connection and thus it includes database connection identification and object identification too. The same object can be loaded into memory via two different connections, and can be changed independently in the context of each of the connection.

A database pointer can point to objects derived from PersistentObject or OidBasedPersistentObject. Descendants of DatabaseObject class represent a result of a SQL query (they do not represent real persistent objects) and so can not be referenced using DatabasePointers. The common ancestor of DatabasePointer and DatabaseObject, an ObjectReference class is defined for the purpose of referencing all kinds of objects retrieved from the database.

When a specified object is accessed through its database pointer, the pointer is automatically dereferenced, i.e. the object is loaded (if necessary) from the database and placed into the memory.

The ObjectReference class defines operators * and -> that allow the usage of DatabasePointers in a similar way as standard pointers in the C++ programming.

For more details about DatabasePointers, ObjectReferences and mechanism of accessing persistent objects see the SDR sec. 3.7.5, 3.7.6, 3.7.7 and 3.10.

Accessing object attributes and methods

After executing a query, retrieved objects can be accessed using the QueryResult::Get() method as mentioned above. This method returns a pointer to ObjectReference class, which in fact points to a DatabaseObject (to one of its descendants) or a DatabasePointer instance.

In case of retrieving descendants of PersistentObject class this method returns a pointer to a DatabasePointer instance as a pointer to ObjectReference and must be typecast to (DatabasePointer *), see the previous example.

Attributes and methods of the selected object are accessed though the DatabasePointer as follows.

((DerivedClass &) DbPointer-> ReferencedObject()).MethodOfDerivedClass();

or

((DerivedClass &) DbPointer-> IsInMemory()) -> MethodOfDerivedClass();

In both cases the result must be typecasted explicitely to the reference to correct class, resp. to the pointer to the correct class, because the return types of the ReferencedObject() and IsInMemory() methods are a reference to the DatabaseObject class, resp. a pointer to ObjectReference class. These classes known none of methods added by the programmer in the descendants during development of the application.

Example � POŘ Example * ARABSKÉ �33� - Browsing of query results

DatabasePointer *DbPtr;

DbPtr = (DatabasePointer *)QR->Get();

char * WorkersName =	((Workers &)(DbPtr->ReferencedObject())).Name();

// or

//char * WorkersName =	((Workers *)(DbPtr->IsInMemory())).Name();

...

To simplify access to persistent objects attributes and methods two macros were defined in the headerfile of the ObjectReference class.

#define REF(ORF,T) ((T &)(ORF)->ReferencedObject())

Returns the reference to the object, typecasted to T&. (Because method ReferencedObject() returns DatabaseObject &).

#define PTR(ORF,T) ((T *)(ORF)->IsInMemory())

Similar to the previous macro, this macro returns the memory pointer instead of the reference. The pointer is retrieved by calling method IsInMemory.

Using these two macros, the above example could be rewritten as:

Example � POŘ Example * ARABSKÉ �34� - Using macros REF and PTR for browsing of query results

DatabasePointer *DbPtr;

DbPtr = (DatabasePointer *)QR->Get();

char * WorkersName =	REF(*DbPtr, Workers).Name();

// or

// char * WorkersName =	PTR(*DbPtr, Workers)->Name();

...

Manipulating polymorph results

The queries are executed on some particular class. Up to the GEN.LIB version 1.0.6, the obtained query result result contained database pointers, with the prototype object set to the prototype of the same class. But in fact, result of such query might contain the instances of the queried class as well as instances of any derived subclass.

At the time the database pointer to some particular class was dereferenced, the application got the pointer to the instance of exactly that class.

If the correct class of the object with the OID 1 was the class Workers (see � ODK _Ref400429357 \n �3.4.2.4�) and the application asked for all instances of the class Employees, it obtains a database pointer pointing to the instance with the OID equal to 1, but typed to class Employees. Derefrencing of that database pointer created an instance of class Employees, and filled it with the corresponding part of the original instance.

This approach is changed in the version 1.0.7 of the GEN.LIB. The rule, saying that a dereference of the database pointer retrieves instance of the same class as the prototype of the database pointer stay the same, but the database pointers obtained from the result of the query are typed correctly according to the original classes of resulting instances. This approach ensures, that all database pointers created inside the library are corectly prototyped.

In addition, the application has possibility to call the method

virtual class ObjectReference &ObjectReference::Virtualise()

If the target is a database pointer, it replaces the prototype of the database pointer by the correct prototype for the target instance. This method needs to do one database select to find out the correct class of that instance.

To allow more comfortable acces to the objects via database pointers, two new macros were defined:

#define VREF(ORF,T) ((T &)(ORF).Virtualise()->ReferencedObject())

Returns the reference to the object, typecasted to T&. (Because method ReferencedObject() returns DatabaseObject &). The prototype inside the database pointer is corrected before the object reference is used.

#define VPTR(ORF,T) ((T *)(ORF) .Virtualise()->IsInMemory())

Similar to the previous macro, this macro returns the memory pointer instead of the reference. The pointer is retrieved by calling method IsInMemory. The prototype inside the database pointer is corrected before the object reference is used.

Note that neither the Virtualise() method, nor VREF and VPTR macros are needed for accessing objects in case the database pointers were created by the GEN.LIB itself. Only if the application creates new database pointer, it could use those methods to correct its prototype (see � ODK _Ref400431122 * VČETNĚFORMÁTU �Example 47� for definition of the DatabasePointer *Workers::MyBoss1() method, where the pointer is created by the application).

The GEN.LIB stores the name of the table, associated with the class in the OID_ROOT.CLASS_NAME column at the time the object is created using BePersistent() method. If the correct prototype should be set during the query result retrieval, the application must be able to find the correct prototype according the name of the associated table.

Application must therefore register all classes, which could be retrieved from the database and which are wanted to be correctly maintained. If the particular class is not registered and instance of that class appears in the result, the database pointer is not changed to the correct class, but neither error, nor warning is generated.

Class is registered, when the method

BOOL ObjectReference::RegisterClass()

is invoked on any one instance of the class. As the best instance of the class for registration appears the prototype of the class.

The registration of the classes is allowed after the GEN.LIB is initialised, and recomended before the first query execution. Program registering its classes should look like:

Example � POŘ Example * ARABSKÉ �35� - Registering classes in the application

#include <genlib.h>

int main()

{

 GenLib.Init();

 OidBasedPersistentObject_class.RegisterClass(); //need not be registered

 Employees_class.RegisterClass();

 Workers_class.RegisterClass();

 Bosses_class.RegisterClass();

 Projects_class.RegisterClass();

 :

 :

 GenLib.Close();

 return 0;

}

The AUTO_VIRTUAL_OBJECT_LOAD label (see � ODK _Ref400432574 \n �2.4�) must be defined to allow the GEN.LIB to provide this feature. This label is defined as a default in the GEN.LIB 1.0.7 library. If this labels is not defined, the information about class is not stored for the newly created instances and also is not used to correct prototype informations inside the database pointers.

Creating, updating and deleting persistent objects

Creating new objects in database

To create a new persistent object the user must first create its transient variant in memory. Then this object can be made persistent by inserting into the database. The description of this process follows. Suppose the corresponding subclasses of PersistentObject or OidBasedPersistentObject classes are already defined and the necessary database tables exist.

Create a new instances of the desired class in memory in a standard way, by calling the C++ new statement. The object attributes are initialised by one of the defined constructors. Change the values of object attributes as desired.

// create objects ...

Workers * Worker = new Workers("Yellowstone", 4000, "Analyst");

Employees * Employee = new Employees("Yossemit", 5000);

Connect to the database using Database::Connect(...) method.

DatabaseConnection *DbCon = NULL;

DbCon = SampleDatabase.Connect("adoore","adoore95");

Make the new objects persistent by calling the virtual method BePersistent().

DatabasePointer *WPtr = &(Worker->BePersistent(DbCon));

DatabasePointer *EPtr = &(Employee->BePersistent(DbCon));

This method causes the insertion of the corresponding rows into the database (an INSERT command is automatically constructed and sent to the database).

From this point the object is treated as persistent and all its changes are propagated to the database according to the UpdateStrategy settings.

The Insert command is not committed and the user must commit it explicitly, for example by calling the DatabaseConnection::Commit() method, that causes to commit all changes made on objects manipulated through this connection.

The DatabaseConnection::Commit() method is called automatically by the library while closing the GEN.LIB Interface for all DatabaseConnections.

Modifying objects

After retrieving or creating a persistent object the user can change values of the object attributes. All primitives, which change the content of the instance should call the MarkAsDirty() method of that instance.

Persistent objects are updated in two ways depending on the update strategy. If the update strategy is set to US_Immediately, an UPDATE command is constructed and sent to the database immediately after any change to this object, respectively each time the MarkAsDirty() method is invoked.

If the update strategy is set to US_OnDemand all changes must be written to the database explicitly by calling PersistentObject::Update() method of the selected instance.

Example � POŘ Example * ARABSKÉ �36� - Modifying persitent objects

Worker->SetSalary(6000);	// changes salary only in memory

// MarkAsDirty() method is called inside

Worker->Update();			// sends an UPDATE command to the database

Each object has its own update strategy. When the object is created the UpdateStrategy is initialized according the global setting (see the Environment section). The default value of the global setting is US_OnDemand.

All methods defined by the user that perform changes on the object attributes should mark this object as dirty (by calling DatabaseObject::MarkAsDirty() method). If the object is not marked as dirty, no action is performed by the Update() method. See � ODK _Ref379615014 * VČETNĚFORMÁTU �Example 29�. For details about the dirty flag see SDR sec. 3.7.2.

The changes made to the database are not committed and the user must commit it explicitly.

While the object is loaded into memory, other users can possibly change the object values in the database. To force the object to be read from the database again, the virtual method DatabaseObject::Refresh() can be used.

Example � POŘ Example * ARABSKÉ �37� - Refreshing persitent objects

Worker->Refresh();

Writing strategy determines the when the object changes are written to the database.

Example � POŘ Example * ARABSKÉ �38� - Modifying persitent objects

// retrieve a Workers object

Query Q_W("EMPLOYEES.NAME = \'John\'");

QueryResult * QR_W = Workers_class.ExecuteQuery(Q_W, DbCon);

DatabasePointer * W_DbPtr = (DatabasePointer *)QR_W->Get();

QR_W->Close();

// set update strategy

W_DbPtr->SetUpdateStrategy(US_Immediately);

// change attribute values

PTR(*W_DbPtr,Workers)->SetSalary(700);	// an UPDATE command is sent to

							// database

// change update strategy

W_DbPtr->SetUpdateStrategy(US_OnDemand);	

// change attribute values again

PTR(*W_DbPtr,Workers)->SetSalary(1000);	// changed only in memory

PTR(*W_DbPtr,Workers)->Update();		// changes written to database

Deleting objects

A persistent object instance can be deleted only from the memory or both from the memory and the database.

The virtual method DatabaseObject::Free() destroys the object in memory only (i.e. it removes it from the Object Buffer). If the object is marked as dirty, it is updated in the database (an UPDATE command is sent) before the copy in the memory is destroyed.

This method succeeds if all tests (for example, if the object is not locked) are passed successfully. If the object is locked in memory it can not be removed and a GenLibException_MemoryLock() exception is thrown.

The virtual method DatabaseObject ::Delete() removes the object from the memory as well as from the database. This method succeeds if all tests (for example, if the object is not locked) are passed successfully.

The object is first deleted from the database. One or more (if necessary) DELETE commands are constructed and sent to the database. Then it is marked as clean and removed from the memory by calling DatabaseObject ::Free().

If the NO_DATABASE_CASCADE_DELETE label is defined, the GEN.LIB suppose, that it must delete instances of descendants of the OidBasedPersistentObject piece by piece from all tables going from the bottom to the top of the hierarchy tree. If the lable is not defined (default), GEN.LIB suppose, that it is possible to delete the corresponding row only in the table OID_ROOT, which is associated with the OidBasedPersistentObject class and that the rest of the instance will be deleted by the SQL server using cascade delete constraints defined on the descendans tables.

Example � POŘ Example * ARABSKÉ �39� - Deleting persitent objects

Employee->Free();	// delete object from memory

Worker->Delete();	// delete object from memory and from the database

Locking objects in the memory

As mentioned above a mechanism for locking objects in memory is implemented in the GEN.LIB library. This prevents undesired removing of objects from memory (i.e. from the Object Buffer) amd also spedds�up the access to the object, because standard pointers can be used to access them. Multiple locks can be placed on the object. The object can be removed from memory only when all the locks are released. Following methods are used to manage memory locking. For details see SDR sec. 3.7.2.

virtual class DatabaseObject *ObjectReference::MemoryLock();	

Locks the object in memory.

virtual BOOL ObjectReference::MemoryUnlock();

Unlocks the object in memory.

virtual unsigned int ObjectReference::MemoryLocked() const ;

Returns the number of locks.

virtual BOOL ObjectReference::RemoveAllMemoryLocks();

Releases all remaining memory locks on the object.

Example � POŘ Example * ARABSKÉ �40� - Locking persistent objects in memory

DatabasePointer * W_DbPtr;

...

W_DbPtr->MemoryLock();

int NumberOfLocks = W_DbPtr->MemoryLocked();	// returns 1

W_DbPtr->MemoryLock();

int NumberOfLocks = W_DbPtr->MemoryLocked();	// returns 2

W_DbPtr->MemoryUnlock();		// one lock released

try

	{...

	W_DbPtr->Free(); 	// an GenLibException_MemoryLock is thrown because

				// the object is still locked in memory

	}

catch (GenLibException &X) {

	 W_DbPtr->MemoryUnlock();

	 };

W_DbPtr->Free();

Many of the actions performed with persistent objects can be called also through the GenLib Interface using methods of the GenLibInterface class.

virtual class DatabaseObject *GenLibInterface::MemoryLock(class ObjectReference &Orf);	

Locks the referenced object in the memory.

virtual BOOL GenLibInterface::MemoryUnlock(class ObjectReference &Orf);

Unlocks the referenced object in the memory.

virtual unsigned int GenLibInterface::MemoryLocked(class ObjectReference &Orf) const ;

Returns the number of locks on the referenced object.

virtual BOOL GenLibInterface::RemoveAllMemoryLocks();

Releases all remaining memory locks on all objects.

virtual BOOL GenLibInterface::RemoveAllMemoryLocks(class Database &Db);

Releases all remaining memory locks on all objects from the given database.

virtual BOOL GenLibInterface::RemoveAllMemoryLocks(class DatabaseConnection &DbConn);

Releases all remaining memory locks on all objects from the given connection.

virtual BOOL GenLibInterface::RemoveAllMemoryLocks(class ObjectReference &Orf);

Releases all remaining memory locks on the referenced object.

For the detailed description of the corresponding functions see SDR sec. 3.8.1.

Relations

OMT-relations between objects are represented as instances of the Relation class. An OMT-relation links together instances of two classes. According to the OMT methodology we consider only binary OMT-relations here.

The Relation class has three subclasses representing one-to-one, one-to-many and many-to-many relations (OneToOneRelation, OneToManyRelation and ManyToManyRelation respectively).

The member of the OMT-relation is a couple of objects. We call the first member of this couple as the left member and the second one as the right member. Accordingly we use terms „left side“ and „right side“ of the relation to identify the first or the second class related together via a particular OMT-relation.

Let suppose the situation, where two classes A and B are related via OMT�relation R, as is shown on this figure.

�

Figure � POŘ Figure * ARABSKÉ �3� - OMT-relation

The role of the class A in the OMT�relation is called „a“ and the role of the second class is called „b“. We suggest to add two access methods to each of participating classes:

One of those methods should be named according to the name of the OMT�relation and should return address of the instance, which represents OMT�relation itself,

and second method should have name of the role of the opposite class in the OMT�relation, and should return a pointer to new QueryResult instance, which collects all instances of the opposite class, related with the given instance. This method can be defined twice:

First without any parameter, returning all related instances.

Second with a Query parameter, returning all related instances, which fits the condition given by the query.

Having the instance of the Relation class, it is possible to restrict it on the left side, or on the right side respectively, to one particular instance. To restrict relation, user can use methods

Relation::LRestrict(class DatabasePointer &_left)

Relation::RRestrict(class DatabasePointer &_right)

Restricted relation represents all instances related with the object the relation was restricted to. If the ralation is restricted, it is possible to use methods manipulating with the restricted relations.

To release the restriction of the relation, and to obtain relation representing all couples of related instances, user can use method

Relation::Expand()

The items of the OMT-relation, can be inserted, deleted and accessed step-by-step. The items of OMT-relations are either couples of DatabasePointer objects if the OMT�relation is expanded, or DatabasePointer instances if the OMT�relation is restricted. A restricted OMT-relation substitutes the subject of restriction as the missing parameter in the couple. The changes to the OMT-relations are immediately written to the disk, they are not buffered.

Creating relations

Object of any new classes derived from PersistentObject can be linked via OMT-relations. The Relation class uses the prototype mechanism to create the appropriate SQL statements, so the definition of new subclasses of Relation are not needed.

Each instance of Relation class remembers it’s left-side and right-side class templates and corresponding relation name. Optionaly, the relation can be created with alternative names for the column names, which represents relation in the database.

The way of representing relations depends on their cardinality. But accessing and manipulating them is independent on it.

One to one relation

In one to one OMT-relation each object can have only one object linked with it via this relation. To create an instance of the OneToOneRelation, one of the corresponding constructors must be called. The OneToOneRelation object must be properly initialized. Though there exists only one associated left-side object for each right-side object (and vice versa), this link is represented as an additional column(s) in both database tables associated with the participating persistent object classes.

OneToOneRelation class provides the following constructors.

OneToOneRelation::OneToOneRelation(

		const class DatabaseObject *a_left_prototype,

		const class DatabaseObject *a_right_prototype,

		char *a_table_name,	// name of the OMT-relation

		class DatabaseConnection *a_database_connection,

		char *a_left_column_name,

		char *a_right_column_name

);

and

OneToOneRelation::OneToOneRelation(

		const class DatabaseObject *a_left_prototype,

		const class DatabaseObject *a_right_prototype,

		char *a_table_name,	// name of the OMT-relation

		class DatabaseConnection *a_database_connection

);

Prototypes for both classes must be passed in the first two parameters.

The a_table_name parameter should contain the name of the relation. This name is used for different purposes depending on the cardinality of the relation.

The a_database_connection parameter represents a connection through which the relation is manipulated.

The last two parameters are optional (there is another constructor without these parameters) and specify the names of the corresponding database columns, which refers to the primary key of the left class in the right table and to the primary key of the right class in the left table in the database. If these parameters are ommitted they are created automatically as the names of the left table primary keys with the prefix ‘ATableName_L_’ and as the names of the right table primary keys with the prefix ‘ATableName_R_‘. The database column with those names (given or constructed) must, of course exists in the database � left column names in the right table and vice versa.

Example � POŘ Example * ARABSKÉ �41� - Creating one to one relation

Lets define two new classes Projects and Bosses.

class Projects: public OidBasedPersistentObject

{protected:

	static long	_SQL_P_OID;

	static char	_SQL_Name[];

char *_Name;

public:

	Project();

	~Project();

...	};

class Bosses : public Employees

{protected:

	static long	_SQL_B_OID;

	static char	_SQL_OfficeNo;

char *_OfficeNo;

public::

	Project();

	~Project();

...	};

Now lets define a one to one relation Projects-Bosses where each Project has its Boss (exactly one) and each Boss leads one Project. The database schema should look as follows:

PROJECTS(OID, NAME, BOSSES_OID),

BOSSES(OID, OFFICE_NO, PROJECTS_OID)

The following constuctor creates the appropriate relation instance.

OneToOneRelation * P_B_Rel =

 new OneToOneRelation(

 &Projects_class,

 &Bosses_class,

 "PROJECTS_BOSSES",

 DbConnection,

 "PROJECTS_OID",

 "BOSSES_OID"

);

Where DbConnection is a pointer to an instance of the DatabaseConnection class. The last two parameters could not be ommitted because the automatically generated column names PROJECTS_BOSSES_L_OID and PROJECTS_BOSSES_R_OID don’t correspond to the real database column names.

One to many relation

In one to many OMT-relation each object on the right side can be linked with only one left-side object and each object on the left side can be linked with many right-side objects. To create an instance of the OneToManyRelation, one of the corresponding constructors must be called. The OneToManyRelation object must be properly initialized. Though there exists only one associated left-side object for each right-side object , this link is represented as an additional column in the database table corresponding to the right-side class.

OneToManyRelation class provides the following constructors.

OneToManyRelation ::OneToManyRelation(

		const class DatabaseObject *a_left_prototype,

		const class DatabaseObject *a_right_prototype,

		char *a_table_name,

// name of the OMT-relation

		class DatabaseConnection *a_database_connection,

		char *a_left_column_name,

		char *a_right_column_name	// is not used !!

);

and

OneToManyRelation ::OneToManyRelation(

		const class DatabaseObject *a_left_prototype,

		const class DatabaseObject *a_right_prototype,

		char *a_table_name,	// name of the OMT-relation

		class DatabaseConnection *a_database_connection

);

The parameters have similar meaning as parameters of OneToOneRelation() constructor. If the second variant of the constructor is used and names of columns for relation representation are not specified they are created automatically. The left column names are costructed as names of the corresponding primary keys with the prefix ‘ATableName_’. The right column names are not used anyway, and the parameter is present only for compatibility with other types of OMT�relations. The database columns with those names (given or constructed) must, of course exists in the right table in the database.

Example � POŘ Example * ARABSKÉ �42� - Creating one to many relation

Consider the earlier defined classes Workers and Trades (see � ODK _Ref400420134 \n �3.4.4�). Lets define a OMT-relation Trades-Workers between these classes. Each Workers instance can be associated with one (or zero) Trades instances and each Trades instance can be associated with many Workers instances.

A new column TRADES_NAME must be added to the WORKERS database table (this is possible because there exists at most one Trade for every Worker). So the corresponding database schema would look as follows :

 TRADES(NAME,ADDRESS),

WORKERS(OID, NAME, TRADES_NAME)

The following constuctor creates the appropriate relation instance.

OneToManyRelation * T_W_Rel =

 new OneToManyRelation(

 &Trades_class,

 &Workers_class,

 "TRADE_WORKERS",

 DbConnection,

 "TRADE_NAME",

 "OID"

);

Where DbConnection is a pointer to an instance of the DatabaseConnection class. The last two parameters couldn’t be ommitted because the automatically generated column names TRADE_WORKERS_NAME and TRADE_WORKERS_OID don’t correspond to the real database column names. Note that the right column name is never used in one to many relation (there is no additional column in the left table) but is present for compatibility with other relations.

Important Note: The OneToManyRelation is NOT symmetric. If you swap the class prototypes and also the names of the foreign key columns in the constructor of the OneToOneRelation or of the ManyToManyRelation classes, the relation will work correctly, only the sides of the relation are swapped. In case of OneToManyRelation also the cardinality is swapped, which causes an SQL error because the foreign key columns are defined only in one of related tables.

Many to many relation

In many to many OMT-relation the number of object linked to each other is not limited. To create an instance of the ManyToManyRelation, one of the corresponding constructors must be called. The ManyToManyRelation object must be initialized with the appropriate database tables and column names. Though there can exist many object associated to object on each side the relation must be implemented as a new database table containing key attributes of both participating classes.

ManyToManyRelation class provides the following constructors.

ManyToManyRelation::ManyToManyRelation(

		const class DatabaseObject *a_left_prototype,

		const class DatabaseObject *a_right_prototype,

		char *a_table_name,	// name of the OMT-relation

		class DatabaseConnection *a_database_connection,

		char *a_left_column_name,

		char *a_right_column_name

);

and

ManyToManyRelation::ManyToManyRelation(

		const class DatabaseObject *a_left_prototype,

		const class DatabaseObject *a_right_prototype,

		char *a_table_name,	// name of the OMT-relation

		class DatabaseConnection *a_database_connection

);

The parameters have similar meaning as parameters of OneToOneRelation() constructor. The a_table_name parameter must contain the real name of the database table containing the relation.

If no column names are specified, they are constructed automatically as a names of corresponding primary keys with the “L_“ prefix for the left side and with the “R_“ prefix for the right side.

Example � POŘ Example * ARABSKÉ �43� - Creating many to many relation

Consider the earlier defined classes Workers and Projects. Lets define a many to many relation Projects-Workers where each worker can work on many project and each project can have many workers.

The corresponding database table for the relation would look as follows :

 PROJECTS_WORKERS(PROJECT_OID,WORKER_OID)

The following constuctor creates the appropriate relation instance.

ManyToManyRelation * P_W_Rel =

 new ManyToManyRelation(

 &Projects_class,

 &Workers_class,

 "PROJECTS_WORKERS",

 DbConnection,

 "PROJECT_OID",

 "WORKER_OID"

);

Where DbConnection is an instance of DatabaseConnection class. The last two parameters couldn’t be ommitted because the automatically generated column names L_OID and R_OID don’t correspond to the real database column names.

Relation Indexes and Integrity Constraints

The following indexes should be created in the database to speed–up the access to the related objects and the other relation manipulations:

an UNIQUE INDEX on foreign keys for one to one and one to many relations

an UNIQUE INDEX on set of all columns in the table representing many to many relations

INDEX (not UNIQUE) on the set of left columns and on the set of right columns in the table representing many to many relations

The following integrity constraints should be defined in the database to enhance the relation integrity checking:

a NOT NULL constraint for each column in the many to many relation table.

a PRIMARY KEY constraint on set of all column in the many to many relation table.

This constraint creates the UNIQUE INDEX on this set of columns.

a FOREIGN KEY with the ON DELETE CASCADE constraint associating the many to many relation table with the primary keys of the tables associated with the left as well as with the right classes.

Browsing relations

Obtaining of all instances associated with some concrete instance is similar to obtaining of all instances of some class, which satisfies some condition about its contents.

By calling one of the relation constructors an expanded (not restricted) relation is created. Some of the methods accessing and manipulating with relations require the relation to be restricted.

The relation may be restricted on either the left or the right side by calling the following functions.

BOOL Restrict(class DatabasePointer &a_restricted_to, char a_restriction_side);

Restricts the OMT-Relation to the given side. The master object will be the object specified by the database pointer. The side is either ‘L’ (left) or ‘R’ (right)

BOOL LRestrict(class DatabasePointer &a_restricted_to);

Restricts the OMT-relation to the left side with the master object R on the right side. The restricted OMT-relation will only consist of the objects linked with R.

BOOL RRestrict(class DatabasePointer &a_restricted_to);

Restricts the OMT-relation to the right side with the master object L on the left side. The restricted OMT-relation will only consist of the objects linked with L.

To expand the relation again use the Relation ::Expand() method.

BOOL Expand();

Expands the restricted OMT-relation to the expanded (global) one. The expanded OMT-relation has two columns and consists of all the couples which are in the OMT-relation.

The objects in the relation can be searched using a QueryResult. The Relation class defines several functions that return a list of object linked to the selected instance as a QueryResult. Some of these methods allow to add an additional condition which the selected objects must satisfy. Each Relation instance contains a pointer to the last accessed objects on both sides.

QueryResult *ExecuteQuery(Query &Q);

Applicable only on restricted relations. Executes a given Query and returns pointer to a QueryResult object. As a result, the set of the related objects, which satisfies the condition is returned.

virtual QueryResult *LGetAll(const class DatabasePointer &const right,

		const class Query &const query);

Gets all the objects connected to object "right" according to "query".

virtual QueryResult *LGetAll(const class DatabasePointer &const right);

Gets all objects connected to object "right".

virtual QueryResult *LGetAll(const class Query &const query);

Gets all objects connected to object "LastRight" according to "query".

virtual QueryResult *LGetAll();

Gets all objects connected to object "LastRight".

virtual QueryResult *RGetAll(const class DatabasePointer &const left,

		const class Query &const query);

Gets all objects connected to object "left" according to "query".

virtual QueryResult *RGetAll(const class DatabasePointer &const left);

Gets all objects connected to object "left".

virtual QueryResult *RGetAll(const class Query &const query);

Gets all objects connected to object "LastLeft" according to "query".

virtual QueryResult *RGetAll();

Gets all objects connected to object "LastLeft"

virtual QueryResult *GetAll(const class Query &const query);

Valid only in restricted OMT-relations. It gets all object connected to master object "M" (dependent on the side of the restriction). It calls RGetAll or LGetAll.

virtual QueryResult *GetAll();

Valid only in restricted OMT-relations. It gets all object connected to master object "M" (dependent on the side of the restriction). It calls RGetAll or LGetAll.

virtual BOOL *ExistsCouple(

const class DatabasePointer &const left,

 const class DatabasePointer &const right

);

It returns TRUE, if the cople of objects is related via this OMT�relation.

Every new class should for all its relations provide access methods returning objects linked with the appropriate instance. There are many ways how to implement these methods. It is up to the user which one to choose.

One way is to define the access methods to return directly a pointer to a (non restricted) Relation instance. In this case the rest (i.e. getting a QueryResult) is done by the calling function.

Another way (as shown in the following example) is to return a pointer to a QueryResult instance containing the list of related object. This way does not allow to modify the relation in any way, it can be only searched through the QueryResult. To allow modification of the relation a pointer to a Relation object must be available.

Third way combines both above mentioned approaches. Each of related classes has two access methods to manipulate with the particular relation. One access method (the recommended name for this method is the name of the relation itself) returns the pointer to a whole relation, meanwhile the second one (the recommended method name is the name of the role of the opposite class in the relation) returns the pointer to query result containing all associated objects. The access method for the related objects can have a Query parameter, which causes to exclude all unmatching objects from the result.

Example � POŘ Example * ARABSKÉ �44� - Browsing relations

Consider the above mentioned classes Workers, Trades, Projects and Bosses.

One to one relation

The access methods retrieving the Projects-Bosses relation could for example look as follows.

QueryResult * Projects::Boss()

{

// create relation

QueryResult *result;

OneToOneRelation * P_B_Rel = new OneToOneRelation(&Projects_class, &Bosses_class,"PROJECTS_BOSSES", Connection(),"PROJECTS_OID", "BOSSES_OID");

// restrict it to the selected Project

P_B_Rel->LRestrict(Address());

// return a QueryResult containing all projects bosses

result = P_B_Rel->GetAll();

delete(P_B_Rel);

return result;

};

The PersistentObject ::Address() method returns a database pointer to the calling object (in this case to the Projects instance that called the Boss function). The PersistentObject ::Connection() method returns the DatabaseConnection through which the object is manipulated.

QueryResult * Bosses::Project(Query Q)

{

// create relation

QueryResult *result;

OneToOneRelation * P_B_Rel = new OneToOneRelation(&Projects_class, &Bosses_class,"PROJECTS_BOSSES", Connection(),"PROJECTS_OID", "BOSSES_OID");

// restrict it to the selected boss

P_B_Rel->RRestrict(Address());

// return a QueryResult containing all projects or the selected boss

// matching the query Q

result = P_B_Rel->GetAll(Q);

// delete the one to one relation object

delete(P_B_Rel);

return result;

};

One to many relation

The access methods retrieving the Trades-Workers relation could for example look as follows.

QueryResult * Workers::Trade()

{

QueryResult *result;

OneToManyRelation * T_W_Rel = new OneToManyRelation(&Trades_class, &Workers_class,"WORKERS", Connection(), "TRADE_NAME", "OID");

T_W_Rel->RRestrict(Address());

result = T_W_Rel->GetAll();

delete(T_W_Rel);

return result;

};

QueryResult * Trades::Worker()

{

OneToManyRelation * T_W_Rel = new OneToManyRelation(&Trades_class, &Workers_class,

	"WORKERS", Connection(), "TRADE_NAME", "OID");

T_W_Rel->LRestrict(Address());

return T_W_Rel->GetAll();

};

Many to many relation

The access methods retrieving the Projects-Workers relation could for example look as follows.

QueryResult * Workers::Project()

{

QueryResult *result;

ManyToManyRelation * P_W_Rel = new ManyToManyRelation(&Projects_class, &Workers_class,"PROJECTS_WORKERS",Connection(),"PROJECT_OID","WORKER_OID");

P_W_Rel->RRestrict(Address());

result = P_W_Rel->GetAll();

delete(P_W_Rel);

return result;

};

QueryResult * Projects::Worker()

{

QueryResult *result;

ManyToManyRelation * P_W_Rel = new ManyToManyRelation(&Projects_class, &Workers_class,"PROJECTS_WORKERS",Connection(),"PROJECT_OID","WORKER_OID");

P_W_Rel->LRestrict(Address());

result = P_W_Rel->GetAll();

delete(P_W_Rel);

return result;

};

In the calling function the relations are treated as ordinary QueryResult (see „Browsing a QueryResult“ section).

// retrieve worker's trades

QueryResult * QR_T = PTR(*W_DbPtr,Workers)->Trade();

DatabasePointer * PtrTrade = QR_T->Get();

...

// find all workers in the selected trade

QueryResult * QR_W = PTR(*T_DbPtr,Trades)->Worker();

...

// find all projects of the selected worker

QueryResult * QR_P = PTR(*W_DbPtr,Workers)->Project();

Inserting and deleting relations between objects

Couples of objects (represented by DatabasePointers) can be inserted to and deleted from a OMT-relation.

The Relation class defines several functions that allow creating relations (links) between objects. A couple of objects can be inserted into a non-restricted relation. Also a single object can be linked with a master object in a restricted relation. Objects can be added to both sides of the relation.

virtual BOOL InsertCouple(DatabasePointer &left, DatabasePointer &right);

Inserts a couple <left, right> to the OMT-relation.

virtual BOOL LInsert(DatabasePointer &left);

Inserts couple <L, _LastRight> into OMT-relation. _LastRight is a DatabasePointer to the last processed right object.

virtual BOOL RInsert(DatabasePointer &right);

Inserts couple <_LastLeft, O> into OMT-relation. _LastLeft is a Database Pointers to the last processed left object.

BOOL Insert(DatabasePointer &dbp);

Applicable only on restricted relations. Inserts a new object to the set of related objects.

In the following examples T_DbPtr, W_DbPtr and P_DbPtr are pointers to DatabasePointer instances referencing Trades, Workers and Projects instances respectively.

Example � POŘ Example * ARABSKÉ �45� - Inserting couples to relations

// create Trades-Workers relation

OneToManyRelation * T_W_Rel = new OneToManyRelation(&Trades_class, &Workers_class,"WORKERS", *DbCon, "TRADE_NAME", "OID");

// insert a couple <trade, worker>

 T_W_Rel->InsertCouple(*T_DbPtr, *W_DbPtr);

// create Projects-Workers relation

ManyToManyRelation * P_W_Rel = new ManyToManyRelation(&Projects_class, &Workers_class,"PROJECTS_WORKERS",Connection(),"PROJECT_OID","WORKER_OID");

// restrict it to the selected Project

P_W_Rel->LRestrict(*P_DbPtr);

// insert a new Worker to this Project

P_W_Rel->Insert(*W_DbPtr);

				

The Relation class defines several functions that allow deleting couples of object from a OMT-relation. A single couple of objects can be deleted from a relation.

virtual BOOL DeleteCouple(DatabasePointer &left, DatabasePointer &right);

All links to a selected object can be deleted together in one step.

virtual BOOL LDeleteAll();

Deletes all couples <X, LastRight>.

virtual BOOL LDeleteAll(class DatabasePointer &right);

Deletes all the objects from the left side of the OMT-relation which are connected with master object R on the right side.

virtual BOOL RDeleteAll();

Deletes all couples <LastLeft, X>

virtual BOOL RDeleteAll(class DatabasePointer &left);

Deletes all the objects from the right side of the OMT-relation which are connected with master object L on the left side.

virtual BOOL DeleteAll();

Valid only in restricted OMT-relations. It deletes all the pairs <M, O> or <O, M> (dependent on the side of the restriction) from the OMT-relation, where M is master object. It calls DeleteCouple.

Also a link to a single object can be deleted from a relation.

BOOL Delete(DatabasePointer &dbp);

Valid only in restricted OMT-relations. It deletes a pair <M, dbp> or <dbp, M> (dependent on the side of the restriction) from the OMT-relation, where M is master object. It calls DeleteCouple.

In the following examples T_DbPtr, W_DbPtr and P_DbPtr are pointers to DatabasePointer instances referencing Trades, Workers and Projects instances respectively.

Example � POŘ Example * ARABSKÉ �46� - Deleting couples from relations

// create Trades-Workers relation

OneToManyRelation * T_W_Rel = new OneToManyRelation(&Trades_class, &Workers_class,"WORKERS", *DbCon, "TRADE_NAME", "OID");

// delete a couple <trade, worker>

 T_W_Rel->DeleteCouple(*T_DbPtr, *W_DbPtr);

// delete all workers from the selected trade

T_W_Rel->LRestrict(*T_DbPtr);

T_W_Rel->DeleteAll();

// create Projects-Workers relation

ManyToManyRelation * P_W_Rel = new ManyToManyRelation(&Projects_class, &Workers_class,"PROJECTS_WORKERS",Connection(),"PROJECT_OID","WORKER_OID");

// restrict it to the selected Project

P_W_Rel->LRestrict(*P_DbPtr)

// delete the selected Worker from this Project

P_W_Rel->Delete(*W_DbPtr);

Using Database Pointers for Direct Traversing Between Objects

The OMT–Relations allows the user to traverse from one instance of some class to all related instances. To use this approach is necessary in case of many to many relations, but sometimes the object is associated only with one other object of the specified class.

Let suppose the situation, where each worker is has only one boss.

In the standard C++ approach the pointer to Bosses class is added to definition of the Workers class.

It is possible to define one to many relation between those two classes in the GEN.LIB application, but yet another possibility similar to standard C++ approach is applicable. In this approach the usual pointer to Bosses class is replaced by the DatabasePointer to the Workers class. Instead of the memory location of the boss of the given worker it is necessary to remember the OID of the boss. In addition to this attribute two access methods manipulating this remembered boss OID within the Workers class instances are required. Those two methods can be written to manipulate with the DatabasePointers or even with the regular pointers as it is shown in the following example.

Example � POŘ Example * ARABSKÉ �47� - Using Database Pointers for Direct Traversing

// standard C++ approach		// GEN.LIB approach

class Workers {				class Workers {

...						...

class Bosses *MyBoss;			long _MyBoss; // OID of the boss

...						...

};						// manipulate DatabasePointers

						DatabasePointer *MyBoss1();

						BOOL MyBoss1(DatabasePointer *myboss);

						// manipulate regular pointers

						class Bosses *MyBoss2();

						BOOL MyBoss2(Bosses *myboss);

The implementation of the access methods should look as follows:

DatabasePointer *Workers::MyBoss1()

{

if (_MyBoss > 0) {

	DatabasePointer *result = new(DatabasePointer);

	// Initialise the database pointer to point to my boss ...

	result->Init(Connection(),Bosses_class,LongToStr(_MyBoss));

	// ... and return it

	return result;

	};

return NULL;

};

BOOL Workers::MyBoss1(DatabasePointer *myboss);

{

char *p;

if (myboss == NULL) || (*myboss == DBNULL)

	_MyBoss = 0;

else {

	p = myboss->SelectKeyValues();

	_MyBoss = atol(p);

	Strfree(p);

	};

return TRUE;

};

Bosses *Workers::MyBoss2()

{

if (_MyBoss > 0) {

	DatabasePointer *p = new(DatabasePointer);

	Bosses *result;

	// Initialise the database pointer to my boss

	p->Init(Connection(),Bosses_class,LongToStr(_MyBoss));

	// Get memory pointer typecasted to Bosses*

	result = PTR(*p,Bosses);

	// Delete the database pointer

	delete(p);

	return result;

	};

return NULL;

};

BOOL Workers::MyBoss2(Bosses *myboss);

{

char *p;

if (myboss == NULL)

	_MyBoss = 0;

else {

	p = myboss->SelectKeyValues();

	_MyBoss = atol(p);

	Strfree(p);

	};

return TRUE;

};

In this example, supposing that W is an instance of class Workers, user can write

W.MyBoss2() -> method_of_class_Bosses();

instead of standard C++ statement

W.MyBoss -> method_of_class_Bosses();

Exceptions, types and recovery

During execution of GEN.LIB based application, some exceptions may appear due to incorrect work of database server, network layers of software, incorrect use of GEN.LIB services, insufficient amount of resources (memory), etc. These exceptions are represented by classes, derived from common predecessor GenLibException.

These exceptions are described below. They are the successors of the GenLibException class in the class hierarchy (see the figure).

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �4� - Class hierarchy for exceptions

GenLibException

This is an exception, which represents all exceptions thrown by the GEN.LIB. The user can catch this exception if he wants to handle all exceptions in the same way.

Example � POŘ Example * ARABSKÉ �48� - Catching of GenLibException exception

class Oracle7Database SampleDatabase("");

 //default oracle database

 DatabaseConnection *DbCon = NULL;

 printf("Connecting to the database as user \"adoore\" ...\n");

 try {

	 DbCon = SampleDatabase.Connect("adoore","adoore95");

	 }

 catch (GenLibException &X) {

	 printf("... NOT connected\n");

	 throw;

	 };

 printf("... connected\n");

GenLibException_NotSupported

This exception is thrown, whenever GEN.LIB tries to use any feature, which is not supported by the used SQL engine.

Example � POŘ Example * ARABSKÉ �49� - Catching of GenLibException_NotSupported exception

class Oracle7Database SampleDatabase("");

 //default oracle database

 DatabaseConnection *DbCon = SampleDatabase.Connect("adoore","adoore95");

 ...

 ...

try {

	 DbCon -> Savepoint(“savapoint1”);

	 }

 catch (GenLibException_NotSupported &X) {

	 printf("... savepoints are not supported by the database server\n");

	 throw

	 };

GenLibException_ConnectionError

This exception is thrown, if GEN.LIB can't communicate with the database server.

Example � POŘ Example * ARABSKÉ �50� - Catching of GenLibException_ConnectionError exception

class Oracle7Database SampleDatabase("");

 //default oracle database

 DatabaseConnection *DbCon = SampleDatabase.Connect("adoore","adoore95");

 ...

 ...

try {

	 (*DbCon) << “DELETE FROM WORKERS WHERE OID = 100”;

	 }

 catch (GenLibException_ConnectionError &X) {

	 printf("... connection error occured\n");

	 throw

	 };

GenLibException_SqlError

This exception is thrown, if the database server does not recognise SQL command due to either syntax error, or semantic error (table not exists, etc.).

Example � POŘ Example * ARABSKÉ �51� - Catching of GenLibException_SqlError exception

class Oracle7Database SampleDatabase("");

 //default oracle database

 DatabaseConnection *DbCon = SampleDatabase.Connect("adoore","adoore95");

 char *Dynamically_Created_SQL_Statement;

 ...

 ...

try {

	 (*DbCon) << Dynamically_Created_SQL_Statement;

	 }

 catch (GenLibException_SqlError &X) {

	 printf("... wrong SQL statement executed\n");

	 throw

	 };

GenLibException_DatabaseLock

This exception is thrown, if the specified object can’t be changed in the database because the table row, representing object is locked by another connection.

Example � POŘ Example * ARABSKÉ �52� - Catching of GenLibException_DatabaseLock exception

class Oracle7Database SampleDatabase("");

 //default oracle database

 DatabaseConnection *DbCon = SampleDatabase.Connect("adoore","adoore95");

 DatabasePointer DBP = DatabasePointer(DbCon,&Workers_class,”2”);

 ...

 ...

try {

	 DBP -> Update();

	 }

 catch (GenLibException_DatabaseLock &X) {

	 printf("... object is locked in the database\n");

	 throw

	 };

GenLibException_MemoryLock

This exception is thrown, if the specified object can’t be freed, because it is currently locked on a fixed address of memory.

Example � POŘ Example * ARABSKÉ �53� - Catching of GenLibException_MemoryLock exception

class Oracle7Database SampleDatabase("");

 //default oracle database

 DatabaseConnection *DbCon = SampleDatabase.Connect("adoore","adoore95");

 DatabasePointer DBP = DatabasePointer(DbCon,&Workers_class,”2”);

 ...

 ...

try {

	 DBP -> Free();

	 }

 catch (GenLibException_MemoryLock &X) {

	 printf("... object is locked in the memory\n");

	 throw

	 };

GenLibException_NoMemory

This exception is thrown, if there is not enough memory to complete operation.

Example � POŘ Example * ARABSKÉ �54� - Catching of GenLibException_NoMemory exception

Workers *p;

 ...

 ...

try {

	 p = (Workers *)Workers_class.New();

	 }

 catch (GenLibException_NoMemory &X) {

	 printf("... no room in memory\n");

	 throw

	 };

GenLibException_NotFound

This exception is thrown, if the specified data were not found in the database.

Example � POŘ Example * ARABSKÉ �55� - Catching of GenLibException_NotFound exception

class Oracle7Database SampleDatabase("");

 //default oracle database

 DatabaseConnection *DbCon = SampleDatabase.Connect("adoore","adoore95");

 DatabasePointer DBP = DatabasePointer(DbCon,&Workers_class,”2”);

 Workers *p;

 ...

 ...

try {

	 DBP->MemoryLock();

	 }

 catch (GenLibException_NotFound &X) {

	 printf("... object was not found in the database \n");

	 throw

	 };

Internal libraries

Internal libraries provide some useful services used internally by the GEN.LIB itself. Some of those services can be used by GEN.LIB users.

GEN.LIB provides set of ordinal functions (not a methods of any class), which manipulates with the char* variables.

int Strlen(const char * const src)

Counts number of chars in src, returns 0 if src == NULL

char *Strcpy(char * (&dst), const char * const src)

Copies the source src into destination dst. Frees previously allocated memory for the dst. Allocates the memory for new dst

Example � POŘ Example * ARABSKÉ �56� - Internal libraries - Strcpy() function

char *src = Strcpy(src = NULL, " NAME, SALARY");

//src points to dynamically allocated copy of static text " NAME, SALARY"

char *Strexp(char * dst, const char * src, int len)

Copies the source src into the destination dst. The buffer for the result must already exists, because it is not allocated inside this function. The maximal number of the copied character is len. The copy of the source is terminated by \0 char, so the buffer must be at least len+1 characters long.

int Strcmp(const char * const dst, const char * const src)

compares the source src with the destination dst. Returns zero if the strings are equal and non–zero if the strings differs each from the other. Handles NULL values of parameters correctly.

char *Strfree(char * (&dst))

Frees a dynamically allocated string. Sets dst to NULL. If dst is NULL does nothing.

char *Strcat(char * (&dst), const char * const src)

Concatenates dst and src in the given order. Method frees previously allocated memory for dst and allocates memory for the result.

Example � POŘ Example * ARABSKÉ �57� - Internal libraries - Strct function

char *dst = Strcpy(dst = "Alpha");

char *src = Strcpy(src = "Beta";

Strcat(dst, src);

// dst is set to "AlphaBeta"

char *Strcat(char * (&dst), const int n, const char * const src, ...)

Concatenates the strings src_1, src_2, ... , src_n to the dst in the given order. Method frees a previously allocated memory for dst and allocates a memory for the result.

Example � POŘ Example * ARABSKÉ �58� - Internal libraries - Strcat() function

char *dst = Strcpy(dst = "Alpha");

char *src = Strcpy(src = "Beta";

Strcat(dst, 5, " (", src, ") AND (", src, ")");

// dst is set to "Alpha (Beta AND Beta)"

char *StrAnd(char * (&dst), const char * const src)

Returns a string in form "(dst) AND (src)". Method frees the previously allocated memory for dst and allocates a memory for the result. If one of the parameters is NULL, the second one is returned.

Example � POŘ Example * ARABSKÉ �59� - Internal libraries - StrAnd() function

char *dst = Strcpy(dst = NULL, "ID = 100");

char *src = Strcpy(src = NULL, "NAME LIKE \’P%\’");

StrAnd(dst, src);

// dst is set to "(ID = 100) AND (NAME LIKE \’P%\’)"

Strfree(dst);

Strcpy(src = NULL, "NAME LIKE \’Q%\’");

StrAnd(dst, src);

// dst is set to "NAME LIKE \’Q%\’"

char *StrOr(char * (&dst), const char * const src)

Returns a string in form "(dst) OR (src)". Method frees the previously allocated memory for dst and allocates a memory for the result. If one of the parameters is NULL, the second one is returned.

Example � POŘ Example * ARABSKÉ �60� - Internal libraries - StrOr() function

char *dst = Strcpy(dst = NULL, "ID = 100");

char *src = Strcpy(src = NULL, "NAME LIKE \’P%\’");

StrOr(dst, src);

// dst is set to "(ID = 100) OR (NAME LIKE \’P%\’)"

Strfree(dst);

Strcpy(src, "NAME LIKE \’Q%\’");

StrOr(dst, src);

// dst is set to "NAME LIKE \’Q%\’"

char *StrNot(char * (&dst))

Returns a string in form "NOT(dst)". Method frees the previously allocated memory for dst and allocates a memory for the result.

Example � POŘ Example * ARABSKÉ �61� - Internal libraries - StrNot() function

char *dst = StrCpy(dst = NULL,"ID = 100");

StrNot(dst);

// dst is set to "NOT(ID = 100)"

Strfree(dst);

StrNot(dst);

// dst is set to NULL

char *StrClause(char * (&dst), const char * const prf);

Returns a string in form "prf dst " if dst is not empty. If dst is the empty string, returns NULL. Method frees the previously allocated memory for dst and allocates a memory for the result.

Example � POŘ Example * ARABSKÉ �62� - Internal libraries - StrClause() function

char *dst = "ID = 100";

StrClause(dst, "WHERE");

// dst is set to "WHERE ID = 100 "

Strfree(dst);

StrClause(dst, "WHERE");

// dst is set to NULL

void StrSwap(const char * (&s1), const char * (&s2));

Swaps two strings s1 and s2.

char *StrSplit(char * (&src), const char delim, char * (&dst));

Splits the string src in form "dst delim rest_of_string". This method returns dst in the separate string and the rest_of_string in original variable src. Method frees the previously allocated memory for its parameters and allocates a memory for the results. If no delimiter is present in the original string, dst returns the whole string and src is set to NULL. The leading and trailing white characters are removed from the resulting dst string. Delimiters inside quotas or double–quotas are ignored.

Example � POŘ Example * ARABSKÉ �63� - Internal libraries - StrSplit() function

char *src = Strcpy(src = NULL, " NAME, SALARY");

//dynamically allocated string " NAME, SALARY"

char *dst = NULL;

StrSplit(src, ’,’, dst);

// dst is set to "NAME", src is set to " SALARY"

StrSplit(src, ’,’, dst);

// dst is set to "SALARY", src is set to NULL

char *StrPrefix(char * (&src), const char delim, char * (&dst));

This function is similar to the StrSplit() function. But if no delimiter is found in the string src, it returns dst == NULL, meanwhile StrSplit() returns src == NULL

Example � POŘ Example * ARABSKÉ �64� - Internal libraries - StrPrefix() function

char *src = Strcpy(src = NULL, " NAME, SALARY");

//dynamically allocated string " NAME, SALARY"

char *dst = NULL;

StrPrefix(src, ’,’, dst);

// dst is set to "NAME", src is set to " SALARY"

StrPrefix(src, ’,’, dst);

// dst is set to NULL, src is set to "SALARY"

char *StrPrefixCut(char * (&src), const char delim);

This function is similar to the StrPrefix() function, but doesn’t return the prefix. The prefix is cut off and forgotten.

Example � POŘ Example * ARABSKÉ �65� - Internal libraries - StrPrefixCut() function

char *src = Strcpy(src = NULL, " \’NAME:FIRSTNAME\’:Thomas");

//dynamically allocated string " \’NAME:FIRSTNAME\’:Thomas"

StrPrefixCut(src, ’:’);

// src is set to "Thomas", prefix "\’NAME:FIRSTNAME\’" is omitted

// first colon is enclosed in quotas and is not encountered as delimiter

char *LongToStr(const long n);

Returns long number n as a char* and allocates space for the result.

Example � POŘ Example * ARABSKÉ �66� - Internal libraries - LongToStr() function

long n = 1234567890;

char *str = LongToStr(n);

// str is set to "1234567890"

char *StrMergeLists (

char * (&dst),

char * (&list1), char * (&list2),

const char lists_delimiter,

const char sep_begin,

const char sep_values

const char sep_middle,

const char sep_end

);

char *StrMergeLists (

char * (&dst),

char * (&list1), char * (&list2),

const char lists_delimiter, const char prefix_delimiter,

const char sep_begin,

const char sep_values

const char sep_couples,

const char sep_end

);

These two functions provide most complicated string manipulation in the library. They are used to merge two lists of values, separated by the lists_delimiter character and return result in the dst parameter and also as return value. It is supposed that both lists contain the same number of values. If the number of values is different, only the less number of values is processed. Processing is done in the following way.

Values are taken one by one from both lists.

If the prefix_delimiter is specified (second variant) values are searched for prefix and existing prefixes are removed.

Couple of values from both lists are put together and separated by the sep_values string.

Couples are separated using the sep_couples string.

Before the first couple is put the sep_begin string.

After the last couple is put the sep_end string.

The rests of lists are emptied.

Example � POŘ Example * ARABSKÉ �67� - Internal libraries - StrMergeLists() function

char *list1 = Strcpy(list1 = NULL, "T.A, T.B, T.C, T.D");

//dynamically allocated list of columns in the table

char *list2 = Strcpy(list1 = NULL, "1, 2, 3, 4");

//dynamically allocated list of values

char *result = NULL;

StrMergeLists(

 result,list1,list2,	// destination string and source lists

 ’,’,			// values separated by commas

 ’.’,			// prefixes separated by dots

 "SET ",

 " = ",

 ", ",

 NULL

);

//result == "SET A = 1, B = 2, C = 3, D = 4"

// ^^^^ ^^^ ^^

char *list1 = Strcpy(list1 = NULL, "T.A, T.B, T.C, T.D");

//dynamically allocated list of columns in the table

char *list2 = Strcpy(list1 = NULL, "1, 2, 3, 4");

//dynamically allocated list of values

char *result = NULL;

StrMergeLists(

 result,list1,list2,	// destination string and source lists

 ’,’,			// values separated by commas, no prefixes

 "WHERE (",

 " = ",

 ") AND (",

 ")"

);

//result == "WHERE (T.A = 1) AND (T.B = 2) AND (T.C = 3) AND (T.D = 4)"

// ^^^^^^^ ^^^ ^^^^^^^ ^

��	Contract Number : CP94-764�	Document Reference :LRM01\CU\BIS70930\BIS70930.DOC\B��

GEN.LIB C++ Reference Manual	 � DATUM \l �3.10.1997�	Page � STRÁNKA �87�

