Project Number :	764

Project Acronym :	ADOORE

Contract Number :	CP94-00764

Project Start Date :	1 March 1995

ADOORE Consortium :	Objectif Technologie (France)

	IQSOFT (Hungary)

	Charles University (Czech Republic)

	DCIT (Czech Republic)

�

Document Name :	Software Specification Report (October 1996)

Document Author(s) :	M. Kopecky, V. Tloust, M. Prokes, J. Pokorny (Charles University)

Document Reference :	SSR01\CU\KOP61029 \C

Circulation :	ADOORE Consortium

The information contained in this document is subject to change without notice and should not be construed as a commitment by any members of the ADOORE Consortium. In the event of any software or algorithms being described in this report, the ADOORE Consortium assumes no responsibility for the use or inability to use any of its software or algorithms. The information is provided without any warranty of any kind and the ADOORE Consortium expressly disclaims all implied warranties, including but not limited to the implied warranties of merchantability and fitness for a particular use.

Commission of the European Communities

Copernicus Programme

Document identification

Title : System Specification Report : GEN.LIB Specification�
�
�
�
�
Author(s) : M. Kopecky, M. Prokes, V. Tloust, J. Pokorny�
Company Id. : CU�
�
Project Reference : SSR01�
Organisation Reference : KOP61029�
�
Support : KOP61029.DOC�
�
�
�
�
Validated by :

Objectif Technologie

DCIT

IQSOFT�
Validation Date : �
�
Distribution : ADOORE Consortium�
�
�
�
�
Abstract : This report presents the GEN.LIB preliminary design.�
�
�
�
�
Versions :

A

B

C�
�
�
�
Status :

Submitted

Validated�
Date :

30-12-1995

30-1-1996

29-10-1996�
Observations & Modifications :

Original version

Modifications asked by reviewers

Modifications according to the implementation�
�
�
�
�
�
�
�
�
�
�
CONTENTS

� TOC \o "1-5" \t "Contents;1" �CONTENTS	� GOTOBUTTON _Toc371748664 � PAGEREF _Toc371748664 �3��

FIGURES	� GOTOBUTTON _Toc371748665 � PAGEREF _Toc371748665 �7��

TABLES	� GOTOBUTTON _Toc371748666 � PAGEREF _Toc371748666 �8��

1. GENERAL PRESENTATION OF GEN.LIB	� GOTOBUTTON _Toc371748667 � PAGEREF _Toc371748667 �9��

1.1. Document goal	� GOTOBUTTON _Toc371748668 � PAGEREF _Toc371748668 �9��

1.2. Definitions, Abbreviations and Terminology	� GOTOBUTTON _Toc371748669 � PAGEREF _Toc371748669 �9��

1.3. Applicable Documentation	� GOTOBUTTON _Toc371748670 � PAGEREF _Toc371748670 �9��

1.4. The main extensions made to the Genlib specification during the implementation:	� GOTOBUTTON _Toc371748671 � PAGEREF _Toc371748671 �10��

1.4.1. Changes done due to the programming language chosen	� GOTOBUTTON _Toc371748672 � PAGEREF _Toc371748672 �11��

1.4.2. What is not included in the specification	� GOTOBUTTON _Toc371748673 � PAGEREF _Toc371748673 �12��

2. THE GEN.LIB SOFTWARE FRONTIERS	� GOTOBUTTON _Toc371748674 � PAGEREF _Toc371748674 �13��

2.1. The Software Context	� GOTOBUTTON _Toc371748675 � PAGEREF _Toc371748675 �13��

2.2. External events	� GOTOBUTTON _Toc371748676 � PAGEREF _Toc371748676 �16��

2.2.1. Library initialisation	� GOTOBUTTON _Toc371748677 � PAGEREF _Toc371748677 �16��

2.2.2. Database connectivity	� GOTOBUTTON _Toc371748678 � PAGEREF _Toc371748678 �17��

2.2.3. Transaction control	� GOTOBUTTON _Toc371748679 � PAGEREF _Toc371748679 �17��

2.2.4. Locking strategies	� GOTOBUTTON _Toc371748680 � PAGEREF _Toc371748680 �18��

2.2.5. Data manipulation	� GOTOBUTTON _Toc371748681 � PAGEREF _Toc371748681 �19��

2.2.6. Database queries	� GOTOBUTTON _Toc371748682 � PAGEREF _Toc371748682 �20��

2.2.7. Direct database access	� GOTOBUTTON _Toc371748683 � PAGEREF _Toc371748683 �21��

2.2.8. Traversing objects	� GOTOBUTTON _Toc371748684 � PAGEREF _Toc371748684 �21��

2.2.9. Closing access to databases	� GOTOBUTTON _Toc371748685 � PAGEREF _Toc371748685 �21��

3. MAIN ANALYSIS OBJECTS CHARACTERISATION	� GOTOBUTTON _Toc371748686 � PAGEREF _Toc371748686 �23��

3.1. Domain analysis	� GOTOBUTTON _Toc371748687 � PAGEREF _Toc371748687 �23��

4. MODULE DESCRIPTION	� GOTOBUTTON _Toc371748688 � PAGEREF _Toc371748688 �27��

4.1. Strategies	� GOTOBUTTON _Toc371748689 � PAGEREF _Toc371748689 �27��

4.2. Exceptions	� GOTOBUTTON _Toc371748690 � PAGEREF _Toc371748690 �28��

4.2.1. GenLibException class	� GOTOBUTTON _Toc371748691 � PAGEREF _Toc371748691 �28��

4.2.2. GenLibException_ConnectionError class	� GOTOBUTTON _Toc371748692 � PAGEREF _Toc371748692 �29��

4.2.3. GenLibException_NotSupported class	� GOTOBUTTON _Toc371748693 � PAGEREF _Toc371748693 �29��

4.2.4. GenLibException_SqlError class	� GOTOBUTTON _Toc371748694 � PAGEREF _Toc371748694 �29��

4.2.5. GenLibException_DatabaseLock class	� GOTOBUTTON _Toc371748695 � PAGEREF _Toc371748695 �29��

4.2.6. GenLibException_MemoryLock class	� GOTOBUTTON _Toc371748696 � PAGEREF _Toc371748696 �29��

4.2.7. GenLibException_NoMemory class	� GOTOBUTTON _Toc371748697 � PAGEREF _Toc371748697 �30��

4.2.8. GenLibException_NotFound class	� GOTOBUTTON _Toc371748698 � PAGEREF _Toc371748698 �30��

4.3. SQL commands	� GOTOBUTTON _Toc371748699 � PAGEREF _Toc371748699 �30��

4.3.1. Cmd class	� GOTOBUTTON _Toc371748700 � PAGEREF _Toc371748700 �30��

4.3.2. Cmd0 class	� GOTOBUTTON _Toc371748701 � PAGEREF _Toc371748701 �31��

4.3.3. Cmd1 class	� GOTOBUTTON _Toc371748702 � PAGEREF _Toc371748702 �31��

4.3.4. CmdCommit class	� GOTOBUTTON _Toc371748703 � PAGEREF _Toc371748703 �32��

4.3.5. CmdRollback class	� GOTOBUTTON _Toc371748704 � PAGEREF _Toc371748704 �32��

4.3.6. CmdSavepoint class	� GOTOBUTTON _Toc371748705 � PAGEREF _Toc371748705 �32��

4.3.7. CmdRollbackToSavepoint class	� GOTOBUTTON _Toc371748706 � PAGEREF _Toc371748706 �33��

4.3.8. CmdSql class	� GOTOBUTTON _Toc371748707 � PAGEREF _Toc371748707 �33��

4.4. Level 1 module - Database Dependent Module	� GOTOBUTTON _Toc371748708 � PAGEREF _Toc371748708 �33��

4.4.1. Database class	� GOTOBUTTON _Toc371748709 � PAGEREF _Toc371748709 �34��

4.4.2. Oracle7Database class	� GOTOBUTTON _Toc371748710 � PAGEREF _Toc371748710 �35��

4.4.3. DatabaseConnection class	� GOTOBUTTON _Toc371748711 � PAGEREF _Toc371748711 �36��

4.4.4. Oracle7DatabaseConnection class	� GOTOBUTTON _Toc371748712 � PAGEREF _Toc371748712 �39��

4.5. Level 1 Module - Database Independent Module	� GOTOBUTTON _Toc371748713 � PAGEREF _Toc371748713 �39��

4.6. Level 2 Module - Persistent Object Module	� GOTOBUTTON _Toc371748714 � PAGEREF _Toc371748714 �40��

4.6.1.ObjectReference class	� GOTOBUTTON _Toc371748715 � PAGEREF _Toc371748715 �43��

4.6.2. DatabaseObject class	� GOTOBUTTON _Toc371748716 � PAGEREF _Toc371748716 �57��

4.6.3. PersistentObject class	� GOTOBUTTON _Toc371748717 � PAGEREF _Toc371748717 �62��

4.6.4. OidBasedPersistentObject class	� GOTOBUTTON _Toc371748718 � PAGEREF _Toc371748718 �67��

4.6.5. DatabasePointer class	� GOTOBUTTON _Toc371748719 � PAGEREF _Toc371748719 �68��

4.6.6. ObjectIdentification class	� GOTOBUTTON _Toc371748720 � PAGEREF _Toc371748720 �71��

4.6.7. DatabaseIdentification class	� GOTOBUTTON _Toc371748721 � PAGEREF _Toc371748721 �72��

4.7. Level 2 Module - Interface Module	� GOTOBUTTON _Toc371748722 � PAGEREF _Toc371748722 �73��

4.7.1. GenLibInterface class	� GOTOBUTTON _Toc371748723 � PAGEREF _Toc371748723 �73��

4.8. Level 2 Module - Query Module	� GOTOBUTTON _Toc371748724 � PAGEREF _Toc371748724 �81��

4.8.1. Relation class	� GOTOBUTTON _Toc371748725 � PAGEREF _Toc371748725 �81��

4.8.2. OneToOneRelation class	� GOTOBUTTON _Toc371748726 � PAGEREF _Toc371748726 �97��

4.8.3. OneToManyRelation class	� GOTOBUTTON _Toc371748727 � PAGEREF _Toc371748727 �97��

4.8.4. ManyToManyRelation class	� GOTOBUTTON _Toc371748728 � PAGEREF _Toc371748728 �98��

4.8.5. Query class	� GOTOBUTTON _Toc371748729 � PAGEREF _Toc371748729 �98��

4.8.6. QueryResult class	� GOTOBUTTON _Toc371748730 � PAGEREF _Toc371748730 �101��

4.8.7. QueryResultOnPersistentObject class	� GOTOBUTTON _Toc371748731 � PAGEREF _Toc371748731 �104��

4.8.8. QueryResultOnOidBasedPersistentObject class	� GOTOBUTTON _Toc371748732 � PAGEREF _Toc371748732 �104��

4.9. Use of GEN.LIB in applications	� GOTOBUTTON _Toc371748733 � PAGEREF _Toc371748733 �104��

4.9.1. Multiple inheritance of persistent objects	� GOTOBUTTON _Toc371748734 � PAGEREF _Toc371748734 �104��

4.9.2. Virtual load of objects	� GOTOBUTTON _Toc371748735 � PAGEREF _Toc371748735 �104��

4.9.3. Impact of GEN.LIB use to application	� GOTOBUTTON _Toc371748736 � PAGEREF _Toc371748736 �105��

4.10. Possible future extensions of GEN.LIB	� GOTOBUTTON _Toc371748737 � PAGEREF _Toc371748737 �105��

a) Usage of ODL for persistent object description	� GOTOBUTTON _Toc371748738 � PAGEREF _Toc371748738 �106��

b) Source code generation for accessing existing tables	� GOTOBUTTON _Toc371748739 � PAGEREF _Toc371748739 �106��

5. EVENTS PROPAGATION	� GOTOBUTTON _Toc371748740 � PAGEREF _Toc371748740 �107��

5.1. External Events Propagation through Domain Objects	� GOTOBUTTON _Toc371748741 � PAGEREF _Toc371748741 �108��

5.1.1. Initialisation of the work with library	� GOTOBUTTON _Toc371748742 � PAGEREF _Toc371748742 �108��

5.1.2. Connecting to and disconnecting from database	� GOTOBUTTON _Toc371748743 � PAGEREF _Toc371748743 �109��

5.1.3. Transaction control	� GOTOBUTTON _Toc371748744 � PAGEREF _Toc371748744 �110��

5.1.4. Savepoints	� GOTOBUTTON _Toc371748745 � PAGEREF _Toc371748745 �111��

5.1.5. Creating of new persistent object	� GOTOBUTTON _Toc371748746 � PAGEREF _Toc371748746 �112��

5.1.6. Queries	� GOTOBUTTON _Toc371748747 � PAGEREF _Toc371748747 �113��

5.1.7. Selecting persistent objects	� GOTOBUTTON _Toc371748748 � PAGEREF _Toc371748748 �114��

5.1.8. Obtaining all associated objects	� GOTOBUTTON _Toc371748749 � PAGEREF _Toc371748749 �115��

5.1.9. Work with associations between objects	� GOTOBUTTON _Toc371748750 � PAGEREF _Toc371748750 �116��

�

�
Figures

� TOC \c "Figure" �Figure A Development path of GEN.LIB based application	� GOTOBUTTON _Toc371748751 � PAGEREF _Toc371748751 �14��

Figure B Role of GEN.LIB in application	� GOTOBUTTON _Toc371748752 � PAGEREF _Toc371748752 �23��

Figure C. GEN.LIB modules	� GOTOBUTTON _Toc371748753 � PAGEREF _Toc371748753 �24��

Figure D - GEN.LIB modules - detailed view	� GOTOBUTTON _Toc371748754 � PAGEREF _Toc371748754 �26��

Figure E. Class hierarchy for exceptions	� GOTOBUTTON _Toc371748755 � PAGEREF _Toc371748755 �28��

Figure F. Class hierarchy for commands	� GOTOBUTTON _Toc371748756 � PAGEREF _Toc371748756 �31��

Figure G. Database class	� GOTOBUTTON _Toc371748757 � PAGEREF _Toc371748757 �34��

Figure H. DatabaseConnection class	� GOTOBUTTON _Toc371748758 � PAGEREF _Toc371748758 �36��

Figure I Example of OidPersistentObject descendants	� GOTOBUTTON _Toc371748759 � PAGEREF _Toc371748759 �42��

Figure J The database representation of OidPersistentObject descendants	� GOTOBUTTON _Toc371748760 � PAGEREF _Toc371748760 �43��

Figure K. ObjectReference class	� GOTOBUTTON _Toc371748761 � PAGEREF _Toc371748761 �43��

Figure L. DatabaseObject class	� GOTOBUTTON _Toc371748762 � PAGEREF _Toc371748762 �57��

Figure M. PersistentObject class	� GOTOBUTTON _Toc371748763 � PAGEREF _Toc371748763 �62��

Figure N. OidBasedPersistentObject class	� GOTOBUTTON _Toc371748764 � PAGEREF _Toc371748764 �67��

Figure O. DatabasePointer class	� GOTOBUTTON _Toc371748765 � PAGEREF _Toc371748765 �68��

Figure P. GenLibInterface class	� GOTOBUTTON _Toc371748766 � PAGEREF _Toc371748766 �73��

Figure Q. Relation class	� GOTOBUTTON _Toc371748767 � PAGEREF _Toc371748767 �81��

Figure R. QueryResult class	� GOTOBUTTON _Toc371748768 � PAGEREF _Toc371748768 �101��

Figure S - Scenario 1: GEN.LIB initialisation and closing	� GOTOBUTTON _Toc371748769 � PAGEREF _Toc371748769 �108��

Figure T - Scenario 2: Database connections and disconnections	� GOTOBUTTON _Toc371748770 � PAGEREF _Toc371748770 �109��

Figure U - Scenario 3: Transaction control	� GOTOBUTTON _Toc371748771 � PAGEREF _Toc371748771 �110��

Figure V - Scenario 4: Savepoints	� GOTOBUTTON _Toc371748772 � PAGEREF _Toc371748772 �111��

Figure W - Scenario 5: New persistent object creation	� GOTOBUTTON _Toc371748773 � PAGEREF _Toc371748773 �112��

Figure X - Scenario 6: Queries	� GOTOBUTTON _Toc371748774 � PAGEREF _Toc371748774 �113��

Figure Y Scenario 7: Query execution	� GOTOBUTTON _Toc371748775 � PAGEREF _Toc371748775 �114��

Figure Z - Scenario 8: Obtaining all associated objects	� GOTOBUTTON _Toc371748776 � PAGEREF _Toc371748776 �115��

Figure AA - Scenario 9: Obtaining of association between objects	� GOTOBUTTON _Toc371748777 � PAGEREF _Toc371748777 �116��

��
Tables

� TOC \c "Table" �Table A. LockingStrategy type	� GOTOBUTTON _Toc371748778 � PAGEREF _Toc371748778 �27��

Table B. WaitingStrategy type	� GOTOBUTTON _Toc371748779 � PAGEREF _Toc371748779 �27��

Table C. UpdateStrategy type	� GOTOBUTTON _Toc371748780 � PAGEREF _Toc371748780 �28��

Table D - CLERK database table	� GOTOBUTTON _Toc371748781 � PAGEREF _Toc371748781 �58��

Table E - DEPT database table	� GOTOBUTTON _Toc371748782 � PAGEREF _Toc371748782 �58��

�General Presentation of GEN.LIB

Document goal

Based on general GEN.LIB requirements (see WR03\OT\OT565\95.1129\A) and ADOORE Quality Plan (see QAP\OT\OT537\95.516\B), this document summarises the results of the GEN.LIB specification as planed in the project objectives formulated in WP2 (GEN.LIB development). According to the structure of tasks of the ADOORE project, this report provides a delivery supporting the task 2.1c (C++ GEN.LIB implementation) - particularly the subtask (i) - GEN.LIB specification.

Definitions, Abbreviations and Terminology

GEN.LIB	General Library

OID	Object Identifier

P+	Paradigm plus

RDBMS	Relational Database Management System

Applicable Documentation

WR03\OT\OT565\95.1129\A: WP2-Task 2.1: Work Session Report

QAP\OT\OT537\95.516\B: ADOORE Quality Plan

RWR\DC\TR60106\A: Technical review of Charles University GEN.LIB

RWR\DC\TR60216\A: Technical review of Charles University GEN.LIB

RWR02\OT\OT619\95.1629\A: C++ GEN.LIB Specification Review Report

SSR01\CU\KOP60130.DOC\B: Software Specification Report (January 1996)

�
The main extensions made to the Genlib specification during the implementation:

A new class, called ObjectReference, was added into the hierarchy. It is a common ancestor of classes DatabasePointer and DatabaseObject. ObjectReference provides abstract methods, which are redefined in DatabaseObject and DatabasePointer. The methods of DatabasePointer inherited from ObjectReference generally simply call the associated methods of DatabaseObject, to which DatabasePointer points (for example, DatabasePointer::Update calls DatabaseObject::Update). We unify the manipulation with DatabaseObject and Persistent Object.

A lot of methods propagated from PersistentObject to DatabaseObject or even to ObjectReference. Also many argument and return types of methods changed from PersistentObject to DatabaseObject or even to ObjectReference.

The manipulations with the relations were restricted a bit. The relation is not possible to search as a collection. You can do it using QueryResult if you want to search collection of single objects (database pointers to them) or constructing proper DatabaseObject succesor and sending query to it if you want to browse through couples of objects (couples of database pointers).

We introduced a new DatabaseFieldInfo and DatabaseFieldCount methods of DatabaseObject class, which serves to binding C++ variables to table columns.

When defining a new class, definition of the corresponding new subclass of DatabasePointer, QueryResult or Relation is not needed (see Implementation details in SSR01\CU\KOP60130.DOC\B).

Prototypes of objects were introduced to provide static-like functions and services of classes. This decrease the number of the functions, which should be redefined by the user of the library. Prototypes also make templates in relations and database pointers absolete. The templates-like mechanism is provided by the prototypes now.

Database commands and Exceptions were organized into the object hierarchies.

Also other changes were needed, but they are not so much important (for example, some methods were added to some classes, some methods propagated to the predecessors, some methods have different number of parameters, some changes were made due to the programming language chosen [C++] and so on).

We found several types of such minor changes to the methods. We devided them into several groups and marked them in the text for easily gathering metrics. The used marks are:

(moved from successor

(moved to predecessor

(moved to another place

(moved from another place

(deleted method (class)

(unchanged methods (in previous version already existing classes)

(new method (class)

(method changed

Changes done due to the programming language chosen

Each class has its constructor and destructor. We proposed some initialisation methods in the previous version of documentation, but now each class has the code for construction (destruction) it in (from) the memory and for initialisation (shutdown) in constructor (destructor). Usually we left the initialisation (shutdown) methods. They are called from the constructor (destructor).

A lot of parameters are declared as constant parameters now. We tried to keep specification abstract and not to be dependent on the specific programming language. In this version of specification we are more concrete and precise, so we use the headers of the methods from the program files.

A lot of methods are declared as the constant methods too.

What is not included in the specification

We do not list the constructors without the arguments and the destructors of the objects.

In contrast to the previous document, we do not list attributes of objects here, because the attributes are mostly private or protected and they are manipulated by the methods.

We also do not list the methods which names begin with underscore (_), unless user should know about the underscored method (for example, if it should be redefined).

The GEN.LIB Software Frontiers

The Software Context

GEN.LIB is a general library, which provides interface between application, based on OMT, and SQL database engine for persistent data storage. Both GEN.LIB and application is supposed to be developed using C++ programming language. Primary database server GEN.LIB will communicate with may be either ORACLE or INFORMIX server. Both these engines are at CU at disposal. As a tool for OO analysis and application design was chosen Paradigm+. This product can be helpful not only for above mentioned purpose, but it can be used during GEN.LIB based application development. Paradigm+ provides automatic C++ code generation, according to designed class hierarchies. All code can be generated this way, providing database access of new classes derived from those, described bellow in this Software Specification Report.

A typical development process is shown on � REF _Ref346696018 * LOWER �figure a�

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �A� Development path of GEN.LIB based application

An application development using GEN.LIB will look as follows:

Object oriented analysis

Object oriented design, object and relationship definition

First objects and relationships must be defined. Paradigm+ is supposed to be used for it.

Pre-processing object model

From the definitions written in Paradigm+, the following outputs will be automatically generated:

- SQL definitions of the tables representing objects and relationships in a relational database

- Source code and headers for accessing these tables (e.g. methods for constructing objects, methods for accessing relationships associated to an object, etc.)

Persistent objects definition for accessing existing relational data

- In opposite way to the persistent objects, which are identified by their OIDs (their source code for database access is generated automatically in the previous step), source code for foreign tables access will be done manually according table definitions in database data dictionary.

Creating applications

Target applications will be created by linking together

a) generated C++ source codes and headers (domain model)

b) manually written C++ source code and headers (domain model part)

c) application source codes and headers, written by application developers, and (functional and UI model)

d) GEN.LIB.

�
The position of GEN.LIB among various architectures combining objects and relations is somewhere between Object/Relational Data Managers (e.g. HP Odapter or Ontos OIS). Here moreover a direct manipulation with relations stored in external databases is partly provided.

External events

In this section we describe all external events, which should be accepted by library providing access to SQL based relational database. All events are divided into different event groups and each group is discussed separately.

Set of external events presented in this section is based on following requirements:

All database access is done through GEN.LIB.

GEN.LIB supports a transaction handling.

GEN.LIB provides a persistent storage of objects using relational database server.

GEN.LIB provides access to standard database tables.

GEN.LIB allows a direct database access for massive data update using SQL.

GEN.LIB is responsible for memory management concerning persistent object.

Each object occurs in memory only in one copy in the context of one connection. If the same object is loaded through several connections, then several memory copies of the same object will exist.

GEN.LIB allows the application to select a collection of objects from database according to Boolean conditions. I.e. not only one object according to the primary key (resp. OID) - will be discussed in section � REF _Ref346693402 \n �3� - � REF _Ref346693425 * LOWER �main analysis objects characterisation�.

All names of events in this section are named in the natural language. Events are covered by object methods described later in section � REF _Ref346693514 \n �3.1� - � REF _Ref346693538 * LOWER �domain analysis�.

Library initialisation

In this section methods necessary for library initialisation are listed.

Library Initialisation

Initialises all data structures necessary for correct behaviour of GEN.LIB library. This event must occur before any other event targeting GEN.LIB library.

Database connectivity

In this section all external events related to database connection establishment are listed.

Connect to database

This event starts a new connection between the application and the database server, and starts the first transaction on it.

Disconnect from database

This event closes the connection between the application and the database. Eahc transaction running in time of closing connection should be committed before connection is broken down.

Transaction control

In this section events related to database transactions control are described.

Commit transaction

This event commits the transaction running on a specified database connection and starts a new transaction.

Rollback transaction

This event causes the rollback operation on the current transaction which runs on the specified database connection and then starts a new transaction.

Put savepoint to transaction

This event puts a named savepoint (the name must be specified) into the current transaction running on the specified connection. Implementation of response to this external event depends on the actual database server, because some servers don’t support this feature.

Rollback transaction to savepoint

This external event causes rollback to the named savepoint (its name must be specified) on the current transaction running on the specified connection. Implementation of a response to this external event depends on the actual database server, because some servers don’t support this feature.

Locking strategies

In this event group the events are included, which are responsible for setting appropriate database locking strategy, used by GEN.LIB whenever it loads and updates objects in memory. External events controlling memory locking strategies are presented here too.

Set default locking strategy

Event sets the default database locking strategy. All objects loaded from database will use this default method, if it is not specified otherwise.

Get current default locking strategy

Event gets the current default database locking strategy.

Set locking strategy

Using this event the application can set a specific locking strategy (level) for particular object.

Get current locking strategy

Event returns information about the specific locking strategy (level) used for addressed object.

Lock object in memory

For some purposes it is necessary for the application to lock a persistent object in memory on a fixed memory address. For example, the object locked in memory can be accessed via memory pointer (very fast). Not locked object must be accessed in a more complicated (and thus slower) way, because the persistent object can change memory location between two accesses or may be even not present in memory.

Unlock object in memory

Event for unlocking a locked object. After unlocking, GEN.LIB can swap it out from the memory, and load it back when necessary.

Is object locked in memory?

Test, if the specified object is locked in memory or not. This event returns a number of memory locks on the specified object. Memory lock is supposed to be implement as a multi-level, not as a Boolean semaphore only.

Write objects back to database on demand

Data stored in the memory object will be stored in database only when the application (or GEN.LIB in case of memory shortage or before commit operation) will invoke Store object in database event. This settings is faster than the next one, but it is less safe.

Write objects back to database immediately

Data stored in the memory object will be stored in database every time they become changed. This settings is slower, but more robust.

Data manipulation

Events described in this section are related to storing and retrieving objects to and from relational database server.

Make object persistent

This event is applicable on the newly created object (such object is created in memory during program execution) and forces the object to be persistent (it means, that its contents will be stored in database, and all later changes made on them will be propagated to database as well).

Store object in database

This event causes storing all data of the specified object into database. This storing operation counts as a part of transaction running on the specified connection.

Get object from database

This external event serves for obtaining the specified object from database. The specified object will be retrieved from database and its current memory location will be returned.

Reload object from database

Using this external event, the application can cancel changes done on the specified object and return the object to its original state.

Delete persistent object from memory

This external event deletes the memory representation of the persistent object keeping its data in database.

Delete persistent object completely

This external event causes removing the specified object from both memory (if it was present in the memory) and database.

Database queries

This section collects external events, used for data sets retrieving, based on SQL commands.

Execute query

Event Execute query is suggested to allow to obtain a collection of objects which are compatible with the specified class and ordered according to the specification kept in the query. In fact, only restricted subset of all possible SQL queries will be supported. Legal query corresponds to SQL form:

	SELECT *

	FROM table

	WHERE condition

	ORDER BY ordering_spec;

Slightly more complex queries may be build using database VIEWs. In section � REF _Ref347215102 \n �3.1� we will discuss the possibility to build objects based on “virtual views” (views represented not in database, but constructed on the client side each time the access to specified data is demanded).

Result of a query is a collection of object identifications.

Direct database access

External events described below serves for a “direct” SQL access to database.

Do SQL command

This event is useful for executing SQL commands (using specified connection), which affect more than one row of a database table (more objects). This access is not designed for data retrieval. It is applicable only for data modification commands as UPDATE ... WHERE ..., DELETE FROM ... WHERE ... commands, etc.

Traversing objects

It must be possible to obtain objects connected with any particular object via a specified relation. For example it must be possible to obtain all teachers teaching child, all students taught by a teacher, etc.

Get all objects connected via specified relation

This external event is invoked to obtain all connected objects.

Get all objects connected via specified relation, corresponding with query

This external event is invoked to obtain not all, but a subset of all connected objects. In the subset only those object are present, which correspond to the specified query.

Closing access to databases

In this group of external events, an event which closes work with library is present.

Close library

It destroys all data structures that are necessary for correct behaviour of GEN.LIB library. All opened database connections are closed (if any), then the data structures are destroyed and memory is disallocated. Before any data access can occur, the external event Initialise library must be used again.

Main Analysis Objects Characterisation

This section discusses the general approach to GEN.LIB described in Sect. 2.1 in detail. Notice that no MMI specifications are designed since they are not relevant in connection with this type of software.

Domain analysis

GEN.LIB is a library, managing persistency of application domain objects using relational database servers. Presents rows of external (by other application maintained) tables as C++ objects. Thus, GEN.LIB is, in general, an interface between two different paradigms: a bridge between object oriented paradigm on side of client, and relational database server on the other side. The position of GEN.LIB in an application is shown on the following picture.

�

Figure � SEQ Figure * ALPHABETIC �B� Role of GEN.LIB in application

Besides the standard SQL commercial RDBMS differ each other in the syntax of some commands, as well as in the communication protocol between application and SQL server. One of the main goals of the GEN.LIB specification is to make it as much independent on used database server as possible. The way how to achieve maximal database independence is to identify all database dependent actions, and locate a necessary support in separate - database dependent - module. We present the approach where GEN.LIB is split into two modules:

Database dependent module (as small as possible)

Database independent module

The above described situation is shown on following figure.

�

Figure � SEQ Figure * ALPHABETIC �C�. GEN.LIB modules

The first module is database dependent. It means, that its code must be rewritten each time the programmer wants to access different database server. The second module is database independent and it uses the services provided by the lower laying database dependent part for the database accesses instead of direct Embedded SQL communication.

The database independent module covers most of the functionality of GEN.LIB, and for the communication with the database server uses low-level services provided by the database dependent module. According to its functionality inside the GEN.LIB library it is useful to divide DatabaseDependent module into four subsystems. Each subsystem has its own role in the GEN.LIB architecture.

First, there is Buffer Module. This is the only module of GEN.LIB completely invisible from outside of GEN.LIB. Its role in the system is to speed up an access to persistent objects. In the typical object application, each object is not accessed regularly, in the equidistant time intervals, but more accesses occurs in short time, followed by longer interval without any activity on the same object. To avoid unnecessary database accesses each time when any of the defined methods of object is called or its attribute is read or written, the Buffer Module holds the last recently accessed objects in the memory as long as possible. For the application, the access to objects is transparent. Thus, the application refers to objects independently on the fact, if the accessed object is currently in the buffer or not. If a particular object is in the memory, the application reference is translated into the memory pointer directly. If object is not in the memory, the buffer reads data from the database, builds the object instance, and remembers its memory pointer for future references.

Second, there is Persistent Module. Its role in GEN.LIB is to access persistent objects according to their unique identifications, called database pointers in our specification and design due to similarity between the usage of the DatabasePointers and standard pointers in the C++ programming.

Third, Query Module is present in GEN.LIB. Its main responsibility is to allow the access to the stored data according to their inner values. In addition to this functionality this module maintains the relations between classes (instances of classes), because obtaining all instances associated with some concrete instance is similar to obtaining all instances of some class, which satisfies some condition about its contents. Using of some SQL query is for example the only way how to obtain first data from the database at the time of start of the application, because no pointer to stored data is known to the application. Having at least one object (or its pointer) known, the application can start usual process of spreading activity by traversing from object to object using associations between the instances of the object classes. There are present classes Query, QueryResult and Relation in this module together with their descendants.

Fourth, Interface Module supports the communication between the application and GEN.LIB library.

Communication paths between modules are shown on following picture.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �D� - GEN.LIB modules - detailed view

Module Description

Strategies

To provide strategies for locking objects, updating objects in the database and waiting for locked objects, we introduced three enumerated types, LockingStrategy, UpdateStrategy and WaitingStrategy. The values of these types are described in the following tables.

(enum LockingStrategy

� EMBED Excel.Sheet.5 ���

Table � SEQ Table * ALPHABETIC �A�. LockingStrategy type

(enum WaitingStrategy

� EMBED Excel.Sheet.5 ���

Table � SEQ Table * ALPHABETIC �B�. WaitingStrategy type

(enum UpdateStrategy

� EMBED Excel.Sheet.5 ���

Table � SEQ Table * ALPHABETIC �C�. UpdateStrategy type

Exceptions

During execution of GEN.LIB based application, some exceptions may appear due to incorrect work of database server, network layers of software, incorrect use of GEN.LIB services, insufficient amount of resources (memory), etc. These exceptions are represented by classes, derived from common predecessor GenLibException.

These exceptions are described below. They are the succesors of the GenLibException class in the class hierarchy (see the figure).

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �E�. Class hierarchy for exceptions

(GenLibException class

This is a common abstract predecessor of all exception classes.

Methods:

(virtual const char *Name();

Returns the name of the exception as a string.

(GenLibException_ConnectionError class

This exception is thrown, if GEN.LIB can't communicate with the database server.

derived from:

GenLibException

(GenLibException_NotSupported class

This exception is thrown, if required functionality is not supported on the used database server engine.

derived from:

GenLibException

(GenLibException_SqlError class

This exception is thrown, if the database server does not recognise SQL command due to either syntax error, or semantic error (table not exists, etc.).

derived from:

GenLibException

(GenLibException_DatabaseLock class

This exception is thrown, if the specified object can’t be retrieved from database because the table row, representing object is locked by another connection.

derived from:

GenLibException

(GenLibException_MemoryLock class

This exception is thrown, if the specified object can’t be freed, because it is currently locked on a fixed address of memory.

derived from:

GenLibException

(GenLibException_NoMemory class

This exception is thrown, if there is not enough memory to complete operation.

derived from:

GenLibException

(GenLibException_NotFound class

This exception is thrown, if the specified data were not found.

derived from:

GenLibException

SQL commands

(Cmd class

This class contains encapsulated SQL command, executable on the DatabaseConnection.

It is possible to send such a command to the instance of the DatabaseConnection class using << operator (see the description of the DatabaseConnection class). Commands make a small object hierarchy. The hierarchy is shown on the following figure.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �F�. Class hierarchy for commands

Methods:

(virtual BOOL ExecuteCommand(class DatabaseConnection &DbConn) const;

Executes the command on the given database connection.

 (Cmd0 class

Makes a common predecessor for the SQL commands with no arguments.

derived from:

Cmd

 (Cmd1 class

Makes a common predecessor for the SQL commands with single argument.

(Cmd1(const char * const a_param1);

The constructor with the one parameter.

(Cmd1 &operator = (const Cmd1 &Src);

The copy operator.

derived from:

Cmd

 (CmdCommit class

The class representing SQL command Commit.

derived from:

Cmd0

 (CmdRollback class

The class representing SQL command Rollback.

derived from:

Cmd0

 (CmdSavepoint class

The class representing SQL command Savepoint.

(CmdSavepoint(const char *const a_name);

Constructor; a_name is the name of the savepoint.

(CmdSavepoint(const CmdSavepoint &Src);

Copy constructor.

derived from:

Cmd1

 (CmdRollbackToSavepoint class

The class representing restoring savepoint with rollback.

(CmdRollbackToSavepoint(const char *const a_name);

Constructor; a_name is the name of the savepoint.

(CmdRollbackToSavepoint(const CmdRollbackToSavepoint &Src);

Copy constructor.

derived from:

Cmd1

 (CmdSql class

	The class representing SQL command.

(CmdSql(const char *const a_sql);

Constructor.

(CmdSql(const CmdSql &Src);

Copy constructor.

derived from:

Cmd1

Level 1 module - Database Dependent Module

Database dependent module implements all database dependent routines and makes the rest of GEN.LIB independent on the used database.

We suppose this module will consists of two classes:

Database

DatabaseConnection

(Database class

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �G�. Database class

Database class is the internal representation of a database engine. It is a part of the database dependent module. This class is abstract and all its methods must be redefined in a concrete subclass to allow the access to the real database engine.

Methods:

(BOOL Assign(const char *connect_string);

Assigns internal representation of database to a database server.

(BOOL Sql(const char *SQLcommand);

This method is defined on the DatabaseConnection class.

(BOOL Commit();

Finishing and accepting all transactions on the database. It means the saving the objects from the memory to the database and the request to the database to commit. After saving the method _Commit is called.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_ConnectionError

(BOOL Rollback();

Transaction rollback to the state at the beginning of any transaction on the database. All of the memory objects from the same database are disposed from the memory, because there can be stored newer (and thus invalid) data in the memory.

possible exceptions:

GenLibException_ConnectionError

(BOOL Savepoint(char *name);

This method is defined on the DatabaseConnection class.

(BOOL RollbackToSavepoint(char *name);

This method is defined on the DatabaseConnection class.

(DatabaseConnection *Connect(const char *user, const char *password);

Connect to the database. It returns a pointer to the newly created object DatabaseConnection.

possible exceptions:

GenLibException_ConnectionError

(Oracle7Database class

The example of one possible subclass of the Database class for the Oracle version 7.0 database engine.

Derived from:

Database

Methods:

The same methods as Database class redefined in the way they can communicate with Oracle RDBMS version 7.

(DatabaseConnection class

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �H�. DatabaseConnection class

It represents one database connection. Notice that there can be more connections to the particular physical database.

Methods :

(virtual DatabaseConnection &operator << (const char *SqlCommand);

Sends a SQL command specified by string to the connection. The function is a shortcut for Sql(const char * sql).

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock,

GenLibException_ConnectionError

(DatabaseConnection &operator << (const class Cmd &Command);

Sends a command specified by the object from GENLIB class Cmd to the connection.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock,

GenLibException_ConnectionError

GenLibException_NotSupported

(BOOL operator == (const class DatabaseConnection &DbConn) const;

Tests, if the Database connections are the same.

(BOOL operator != (const class DatabaseConnection &DbConn) const;

Tests, if the Database connections are not the same.

(virtual BOOL Sql(const char *SqlCommand);

SQL query to the database. This function can be issued also by using the command „<< CmdSql(SqlCommand)“ or command „<< SqlCommand“. It includes some above mentioned operations before the execution, i. e. all objects stored in memory from the same database are updated to assure a consistent state of database.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_ConnectionError

(virtual BOOL Commit():

Finishing and accepting the transaction. It means the saving the objects from the memory to the database and the request to the database to commit. This function can be issued also by using the command „<< CmdCommit()“.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_ConnectionError

(virtual BOOL Rollback():

Transaction rollback to the state before the beginning of the transaction, removing all the memory objects from the database and the request to the database to rollback. This function can be issued also by using the command „<< CmdRollback()“.

possible exceptions:

GenLibException_ConnectionError

(virtual BOOL Savepoint(const char *Name):

Inserts a savepoint of the given name into the current transaction. This function can be issued also by using the command „<< CmdSavepoint(char *)“.

possible exceptions:

GenLibException_ConnectionError

GenLibException_NotSupported

(virtual BOOL RollbackToSavepoint(const char *Name):

Database rollback to savepoint of the given name. The changes made between savepoint and current state of the database are cancelled. This function can be issued also by using the command „<< CmdRollbackToSavepoint(char *)“.

possible exceptions:

GenLibException_ConnectionError

GenLibException_NotSupported

(virtual BOOL Disconnect():

Database disconnect with COMMIT data. The database connection will be destroyed. It sends to itself the Commit command (to store the object to the database).

possible exceptions:

GenLibException_MemoryLock

GenLibException_ConnectionError

(virtual BOOL Abort():

Database disconnect with ROLLBACK data. The objects from the memory are not stored to the database.

possible exceptions:

GenLibException_MemoryLock

GenLibException_ConnectionError

(Oracle7DatabaseConnection class

Derived from:

DatabaseConnection

Methods:

The same methods as DatabaseConnection class redefined in the way to allow to the application to communicate with Oracle RDBMS version 7.

Level 1 Module - Database Independent Module

Database independent module is divided into four submodules:

Persistent Object Module

Interface Module

Buffer Module

Query Module

Level 2 Module - Persistent Object Module

This part of GEN.LIB maintains persistency of objects, which is one of the most important part of GEN.LIB. Persistent objects are used in these three slightly different situations:

First, they act as real persistent objects, which use relational database to achieve their own persistency. In this situation they can create appropriate database tables for representing their contents. This type of objects can use database tables to represent object hierarchy according to object specialisation. Each derived class is responsible only for mapping, load and store of its own attributes to one database table. For handling with attributes of its predecessors, parent methods can be called. This methodology correspond well to the object-oriented paradigm.

Second, they provide an access to standard database tables. In this case the object structure must be constructed according to the existing table. All persistent attributes of an object must correspond with some column of only one database table.

Third, the object can represent result of query execution. The contents of those objects must not correspond to any row of database table, but they can be resulted from a complex SQL query. This type of object is useful for accessing data constructed from stored information. For example, let suppose the table

EMP(EMPNO, NAME, DEPTNO, SALARY)

in database. We want to obtain average salary for each department. In SQL, we can construct the query like:

SELECT DEPTNO, AVG(SALARY)

FROM EMP

GROUP BY DEPTNO;

Each row of result can be represent as an object with two attributes:

	short deptno;

	double avg_salary;

This third type of objects serves for read-only access to database. Changes of instances do not imply changes in the database. In many cases, changes are impossible, because data in an object do not correspond directly to database, but they may be derived from them, e.g. as the attribute avg_salary in the previous example.

These three ways of persistent object access will implemented by three abstract classes in GEN.LIB. Each of them will implement one of discussed strategies:

DatabaseObject

Its content is constructed via any SQL select query.

It is possible to select data from more tables joint.

Using of GROUP BY and HAVING clauses, aggregate function operators are allowed.

Object structure must be compatible with query result.

Object changes are not propagated to database.

PersistentObject

Its content is constructed via restricted set of SQL queries.

SELECT may access data in one table only.

Using of GROUP BY and HAVING clauses, aggregate function operators is not allowed.

Object structure must be compatible with the accessed table structure.

Object changes are propagated to an appropriate row of database table.

OidBasedPersistentObjects

The class is similar to PersistentObject with following differences:

Object has special primary key called OID (Object Identification).

OID is unique in the database.

It supports specialisation hierarchy of classes, parent data are stored separately in other tables and handled by predecessors.

On figures “� REF _Ref371747705 * MERGEFORMAT �Figure I�” and “� REF _Ref371747735 * MERGEFORMAT �Figure J�”, the object diagram with some instances of OidBasedPersistentObject descendants, and theirs representation in database are shown.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �I� Example of OidPersistentObject descendants

�\EMBED MSDraw * SloučFormátZnaku���

Figure � SEQ Figure * ALPHABETIC �J� The database representation of OidPersistentObject descendants

(ObjectReference class

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �K�. ObjectReference class

The class ObjectReference is the common ancestor of classes DatabasePointer and DatabaseObject. The class ObjectReference is an abstract class, its successors redefine its methods. Most methods are implemented in the class DatabaseObject. The methods of the class DatabasePointer usual simply test the presence of the referenced object in the memory and then propagate calling the corresponding methods to the DatabaseObject. For example, the method DatabasePointer::Update() calls the method DatabaseObject::Update() if the object is in memory. The instances of the DatabaseObject class and of its succesors reference to themselves.

Methods:

(virtual class DatabaseObject * _New() const ;

Constructs a new empty transient variant of the same type as the referenced object (the constructed object is not stored in the database). Unlike in New, the tests, if the new object can be created in the memory (that is, if it is free place in the memory) are not performed.

This method should be rewritten by the user. Usually it will contain only C++ command new with the name of the new class as an argument.

(virtual BOOL _Free();

This method is private, but the user of GENLIB should be aware of it. This method should be called at the begining of the destructor of the user-defined objects.

(virtual class DatabaseObject &ReferencedObject() const;

Returns the reference to the pointed object which will be read from the database, if the object is not present in memory yet. DatabaseObject and its succesors return themselves.

possible exceptions:

GenLibException_NoMemory,

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Get object from database

(virtual DatabaseObject &ReferencedObject (

 const enum LockingStrategy _Locking_strategy

) const;

Returns reference to the pointed object which will be read from the database, if object is not present in memory. To load the object a predefined locking strategy will be used instead of default one.

possible exceptions:

GenLibException_NoMemory,

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Get object from database

(DatabaseObject *operator ->() const;

Returns the pointer to the pointed object which will be read from the database, if the object is not present in memory yet.

possible exceptions:

GenLibException_NoMemory,

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Get object from database

(DatabaseObject &operator *() const;

Returns the reference to the pointed object which will be read from the database, if the object is not present in memory yet.

possible exceptions:

GenLibException_NoMemory,

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Get object from database

(virtual DatabaseObject* IsInMemory() const;

If the object is present in the memory, returns the pointer to the object (all the pure database objects, some of persistent objects), otherwise returns NULL.

(virtual class DatabaseConnection *Connection() const;

Returns the pointer to the database connection through which the referenced object is (should be) loaded. If referenced object is not really persistent, returns NULL.

(virtual class ObjectIdentification *ObjectID() const;

Returns pointer to the unique identification of an object within a database where it is stored. It means a pointer to a correct prototype and a tuple of values of primary key (OID in case of the oid based persistent object instances). Members of the returned tuple should be separated by commas.

(virtual const class DatabaseObject *Prototype() const;

Returns a pointer to a prototype instance of the referenced class. Each concrete DatabaseObject subclass must have one (constant) empty instance of itself in the memory. This instance serves as the knowledge base about the class. We suggest to name those prototypes NameOfTheClass_class, where NameOfTheClass is the class name.

(virtual const class DatabaseObject *ParentPrototype() const;

Returns a pointer to a prototype instance of the parent of the referenced class

The next group of methods is newly added to the specification due to the new design of the communication with the database.

These procedures are necessary, because the database server (OCI functions of Oracle) demands the addresses of variables, but the C++ program can not say the address of its variables during run-time. For example, server demands the addresses of the variables to bind them before it returns a cursor with the answer to the query

(virtual int DatabaseFieldsCount() const;

Returns the number of the attributes, which are associated with the database table columns and which are added by the referenced class. It is necessary to know, how many embedded variables will be populated by reading one object from the database.

(virtual void DatabaseFieldInfo(

		int i, void *&addr, char &ctype, int &clen

);

Takes an integer i (which means the sequential number of the attribute) as the input and returns the address of the associated memory variable, the type of the C variable, and the length of the associated memory variable (buffer). To each type of C++ corresponds one character. Supported types are:

‘c’	char

‘s’	char *

‘i’	int

‘l’	long

‘u’	unsigned int

‘f ’	float

‘d’	double

This method must be redefined by the user. If the user rewrites this method to return zero as the value of clen parameter, then the proper length is set according to size of the required type automatically. The string variables must return the maximal length of the string, and associated buffer must be at least one character longer (for trailing ‘\0’ character).

The following methods were mostly propagated from DatabaseObject class. They return the parts of the SQL command, which constructs the object. In most cases, the methods have two names, for compatibility with the previous version of the specification.

(virtual char *SelectClause() const;

(virtual char *ColumnNames() const;

This virtual method returns the names of the attributes of a database object, i.e. columns from SELECT clause of the SQL query.

(virtual char *FromClause() const ;

(virtual char *TableNames() const;

Table names from the FROM clause of the SQL query, which constructs an object.

(virtual char *WhereClause() const;

(virtual char *WherePrefix() const;

The basic part of every condition placed in the WHERE clause of the SQL query. Only those rows which meet with this condition are retrieved as objects from database. If this string is not empty and someone executes on this class a query which selects only specified rows using some additional condition, the WherePrefix() is concatenated with WHERE clause in used query via AND operator. The WherePrefix() must return a NULL string in PersistentObject class and their ancestors.

(virtual char *IntoClause() const;

(virtual char *SqlVars() const;

SQL variables from the INTO clause of the SQL query, which constructs the object.

(virtual char *GroupByClause() const;

(virtual char *GroupByColumns() const;

Attributes of the GROUP BY clause of the SQL query, which constructs objects of this class. It must return an empty string in PersistentObject class and its ancestors.

(virtual char *HavingClause() const;

(virtual char *HavingCondition() const;

Condition of the HAVING clause of the SQL query, which constructs the object. It must return an empty string in PersistentObject class and its ancestors.

(virtual char *SelectKeyClause() const;

(virtual char *KeyColumnNames() const;

These methods retrieve the names of the key column(s), which will be used to create this object. For OIDBasedPersistentObjects they return OID column. For PrimaryKeyPersistentObjects, i.e. the objects corresponding to the rows of the relational database, these methods return the set of key columns.

(virtual char *IntoKeyClause() const;

(virtual char *KeySqlVars();

These methods return the names of the SQL variables associated with the key columns of the object. The names begin with colons and are separated by commas. Those symbolic names can not begin with the underscore.

It is recommended, that Into variables should be either global or static within the class.

(virtual char *FromKeyClause() const;

(virtual char *KeyTableNames() const;

Return the name of the table, the object must be deleted from. Clause From is used only in SQL command DELETE. The function returns only the name of single table. The deletion from the other tables, from which the object is build, is guaranted by cascaded deletion.

(virtual char *SelectKeyValues() const ;

Returns a list of key values identifying the object. The values are separated by commas.

(virtual char *WhereKeyClause(BOOL WithoutTablenames = FALSE) const;

Where clause for the key to be used to create this instance. Can be emty in the DatabaseObject class. If parameter WithoutTablenmes is set to TRUE, names of the tables are removed from the column specifications.

The following methods are similar to the methods described above. The difference is, that the above methods concerned to single table, and the following methods concern to all the tables, from which the object is constructed.

(virtual char *SelectAllClause() const;

(virtual char *FromAllClause() const;

(virtual char *WhereAllClause() const;

(virtual char *IntoAllClause() const;

Those symbolic names can not begin with the underscore. It is recommended, that Into variables should be global or static within the class.

(virtual BOOL IsDirty() const ;	

Returns True, if an object is marked as dirty (e.g. the object was changed in the memory).

(virtual BOOL MarkAsDirty();

Marks a referenced object as „dirty“. Only dirty (changed) persistent objects are written to the database when flushing the buffer.

(virtual BOOL Refresh()

It copies an object from disk to the memory again. Returns TRUE, if it succeed.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Reload object from database

(virtual BOOL Update();		

Writes an object from the memory to the disk.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_MemoryLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Store object in database

(virtual class DatabaseObject * New() const;	

Constructs a new empty transient variant of a referenced object of the same type as the receiver object (the constructed object is not stored in the database).

possible exceptions:

GenLibException_NoMemory

(virtual BOOL Free()

Tries to destroy the object in the memory only. Succeeds if all the tests (for example, if the object is not locked) are passed successfully.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_MemoryLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Delete persistent object from memory

(virtual BOOL Delete()

Tries to destroy an object from the memory as well as from the database. Succeeds if all the tests (for example, if the object is not locked) are passed successfully.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_MemoryLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Delete persistent object completely

(virtual class DatabaseObject *MemoryLock()	

Locks a persistent object. Multiple locks can be placed on the object. The object can be

removed from memory only when all the locks are released.

possible exceptions:

GenLibException_NoMemory

covered external events:

Lock object in memory

(virtual BOOL MemoryUnlock();

Unlocks a persistent object in memory. See MemoryLock.

covered external events:

Unlock object in memory

(virtual unsigned int MemoryLocked() const ;

Returns the number of memory locks on receiver or zero if it is not locked.

(virtual BOOL IsTransient() const;

Returns TRUE if an instance of the referenced object is transient, i.e. if it has no copy in database. This can happen if the object was created as transient and was not made persistent by calling BePersistent yet.

(virtual BOOL IsPersistent() const ;

Returns TRUE if the object is really persistent, otherwise it returns FALSE. This function returns the opposite value to the method IsTransient.

(virtual class DatabasePointer &BePersistent(DatabaseConnection *DbCon)

Causes an object to be persistent. Persistent objects are created as transient (they exist only in memory) and when it is needed (all attributes are set to appropriate values), then they can be converted to true persistent objects. An advantage is that transient objects do not propagate into a database while persistent objects are written (in spite of buffering mechanism) to the database often.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_ConnectionError

(virtual BOOL WriteBackImmediately()

Sets the attribute _UpdateStrategy to propagate the changes on the object immediately into the database.

covered external events:

Write objects back to database immediately

(virtual BOOL WriteBackOnDemand();

Sets the attribute _UpdateStrategy to propagate the changes on the object into the database, when it is demanded by calling Update method.

covered external events:

Write objects back to database on demand

(virtual enum UpdateStrategy CurrentUpdateStrategy() const;

Returns the current value of _UpdateStrategy attribute.

(virtual BOOL SetUpdateStrategy(enum UpdateStrategy anUpdateStrategy);

Sets the value of _UpdateStrategy attribute.

(virtual BOOL WaitWhenLock();

Sets the attribute _WaitingStrategy to wait when the locked object is accessed.

(virtual BOOL ErrorWhenLock();

Sets the attribute _Waiting strategy to raise an error when the locked object is accessed.

(virtual enum WaitingStrategy CurrentWaitingStrategy() const;

Returns the current value of _WaitingStrategy attribute.

(virtual BOOL SetWaitingStrategy(enum WaitingStrategy aWaitingStrategy);

Sets the waiting strategy which object should use when it locks its own table.

Waiting strategies for objects can be:

wait

the table is locked and when other connection asks for access to object from this table, process waits for unlocking of the table.

nowait (error)

the table is locked and when other connection asks for access to object from this table, it obtaines an error.

(virtual enum LockingStrategy CurrentLockingStrategy() const;

Returns the current value of _LockingStrategy attribute.

(virtual BOOL SetLockingStrategy(enum LockingStrategy _Locking_strategy);

Sets locking strategy which object should use when loaded itself from database or when the table is locked.

Locking strategies for objects can be:

none

objects do not explicitly locks table rows when they load themselves from database.

useful for retrieving of read-only objects.

shared

objects lock rows with their content in database explicitly after load in shared mode.

other processes can lock the same object in shared, but not in exclusive, mode too

exclusive

objects lock rows with their content in database explicitly after load in exclusive mode.

other processes can not lock the same object neither in shared nor in exclusive mode.

possible exceptions:

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Set locking strategy

(DatabaseObject class

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �L�. DatabaseObject class

The DatabaseObject is the common ancestor of all classes for objects retrieved from the database. The DatabaseObject can represent any projection onto some columns of join of any number of database tables. Instances retrieved from the database are not persistent. They can be changed after retrieving from the database, but changes will not be propagated back into database. Classes derived by the user from this class can be used to access data resulted from any SQL select statement.

Example: Let we have two tables CLERK and DEPT with following data

CLERK_NR�
NAME�
DEPT_NR�
�
1�
Smith, A.�
2�
�
2�
Jones, B.�
1�
�
3�
Pierce, M.�
2�
�
4�
Smith, F.�
3�
�
Table � SEQ Table * ALPHABETIC �D� - CLERK database table

DEPT_NR�
NAME�
�
1�
First Dept.�
�
2�
Second Dept.�
�
3�
Third Dept�
�
Table � SEQ Table * ALPHABETIC �E� - DEPT database table

and we want to know the numbers of employees in each department. We can define new subclass of the DatabaseObject class, for example NumbersOfClerksInDepts with two attributes Dept_Nr a ClerkCount. This class will be assigned with the following Embedded SQL query:

SELECT DEPT.DEPT_NR, COUNT(CLERK.CLERK_ID)

INTO :SqlVar_Dept_Nr, :SqlVar_ClerkCount

FROM CLERK, DEPT

WHERE CLERK.DEPT_NR=DEPT.DEPT_NR

GROUP BY DEPT.DEPT_NR;

Methods:

(virtual BOOL _ExportAttributes() const;

Private method which copies attributes of an object into global variables known to the SQL communication part of GEN.LIB.

This method should be overwritten in new classes.

(virtual BOOL _ImportAttributes();

Private method which copies global variables into attributes of an object.

This method should be overwritten in new classes.

(virtual BOOL _ImportPointerAttributes(

		ObjectReference *DbPtr,

		DatabaseConnection *aConnection

) const;

Private method which fills-in the given database pointer from the global key variables. This method should be overwritten in new direct subclasses of the PersistentObject class.

(virtual BOOL _PostLoad();

Private virtual method executed immediately after a database object is loaded from the database.

It may be overridden by programmer to provide an additional functionality.

(virtual class QueryResult *ExecuteQuery(

		const Query &Q,

		class DatabaseConnection *DbCon

) const;

Executes a given Query and returns pointer to a QueryResult object. This method was changed is not static now. Now we send the executequery not to class but to the arbitrary object including prototype.

 possible exceptions:

GenLibException_NoMemory,

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError,

GenLibException_NotSupported

(char * GetSqlSelect (const Query &const Q) const;

Method which creates a SQL command from attributes of this object and from additional condition. Wanted result :

SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ... ORDER BY

(char * GetSqlSelect(

		const char *const _where_clause ,

		const char *const _order_by_clause,

		const char *const _select_clause,

		const char *const _into_clause ,

		const char *const _from_clause

) const;

Method which creates a SQL command from attributes of this object and from additional condition. Wanted result :

SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ... ORDER BY

(virtual class ObjectReference * NewReference() const

Creates new empty instance of the reference to the receiver. Controls memory space. The DatabaseObject creates another empty instance of its own class, meanwhile the PersistentObject creates an empty DatabasePointer instance.

possible exceptions:

GenLibException_NoMemory

(virtual class DatabasePointer &Address() const

Returns a DatabasePointer to self. DatabasePointer is able to point to object even if it is not really persistent or if it is an instance of the DatabaseObject class.

possible exceptions:

GenLibException_NoMemory

			

(PersistentObject class

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �M�. PersistentObject class

Unlike the instances of a DatabaseObject class which could be compute from data in the database using various operators, the instances of the PersistentObject class are objects stored in a relational database directly. Persistent objects represent rows in existing external relational database tables. Each row is identified by values of the primary key attributes. Persistent Objects can be locked in the memory to avoid their swapping out from memory and to assure their fixed memory addresses until unlock is called.

PersistentObject class can be assigned with only one database table. Its attributes can be mapped only to columns of this assigned database table, not to the results given as evaluation of expressions as e.g. attribute ClerkCount in previous example. For example, we can define the subclass Dept of the class PersistentObject, assigned to the database table DEPT from the previous example. This subclass will have two columns int Dept_Id and char[n] Name. The SELECT statement for retrieving its instances from the database has the form:

SELECT DEPT.DEPT_ID, DEPT.NAME

INTO :SqlVar_Dept_Id, :SqlVar_Name

FROM DEPT;

Select statement can not contain GROUP BY and HAVING clauses, and also WHERE clause can not be used (_WherePrefix must return an empty string).

Derived from:

DatabaseObject

Methods:

(virtual char *SelectKeyValues() const;

This method is defined on the ObjectReference class.

(virtual char *WhereKeyClause() const;

This method is defined on the ObjectReference class.

(ObjectIdentification &ObjectId();

This method is defined on the ObjectReference class.

(virtual BOOL IsDirty() const;

This method is defined on the ObjectReference class.

(BOOL Refresh();

This method is defined on the ObjectReference class.

(BOOL Update();

This method is defined on the ObjectReference class.

(New();

This method is defined on the ObjectReference class.

(_New();

This method is defined on the ObjectReference class.

(BOOL Free();

This method is defined on the ObjectReference class.

(BOOL _Free();

This method is defined on the ObjectReference class.

(BOOL Delete();

This method is defined on the ObjectReference class.

(DatabasePointer &Address();

This method is defined on the DatabaseObject class.

(virtual DatabaseObject *MemoryLock();

This method is defined on the ObjectReference class.

(virtual BOOL MemoryUnlock();

This method is defined on the ObjectReference class.

(virtual unsigned int MemoryLocked() const;

This method is defined on the ObjectReference class.

(virtual BOOL IsTransient() const;

This method is defined on the ObjectReference class.

(virtual BOOL IsPersistent() const;

This method is defined on the ObjectReference class.

(virtual class DatabasePointer &BePersistent(class DatabaseConnection *DbCon);

This method is defined on the ObjectReference class.

(virtual BOOL MarkAsDirty();

This method is defined on the ObjectReference class.

(enum UpdateStrategy CurrentUpdateStrategy() const;

This method is defined on the ObjectReference class.

(BOOL SetUpdateStrategy(enum UpdateStrategy anUpdateStrategy);

This method is defined on the ObjectReference class.

(enum WaitingStrategy CurrentWaitingStrategy() const;

This method is defined on the ObjectReference class.

(BOOL SetWaitingStrategy(enum WaitingStrategy aWaitingStrategy);

This method is defined on the ObjectReference class.

(BOOL WriteBackImmediately();

This method is defined on the ObjectReference class.

(BOOL WriteBackOnDemand();

This method is defined on the ObjectReference class.

(BOOL WaitWhenLock();

This method is defined on the ObjectReference class.

(BOOL ErrorWhenLock();

This method is defined on the ObjectReference class.

(BOOL SetLockingStrategy(enum locking_strategy);

This method is defined on the ObjectReference class.

(virtual BOOL LockTable() const; {

Method lock a table assigned to target object in the database. Only objects really persistent do this action, because the database connection must be known to the object. So the method works for instances of the classes derived from the PersistentObject class.

possible exceptions:

GenLibException_DatabaseLock,

GenLibException_SqlError,

GenLibException_ConnectionError

(virtual BOOL LockTable(

		enum LockingStrategy aLockingStrategy,

		enum WaitingStrategy aWaitingStrategy

) const;

The same as previous method, but the strategies can be set directly.

possible exceptions:

GenLibException_DatabaseLock,

GenLibException_SqlError,

GenLibException_ConnectionError

(OidBasedPersistentObject class

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �N�. OidBasedPersistentObject class

OidBasedPersistentObjects are those designed by P+. They are represented in a relational database by a set of tables. To the root class of the hierarchy tree we assign a table with the columns associated with the attributes of this class. Each descendant class is represented by a table which columns correspond only to the added attributes. Attributes of a particular object deeper in class hierarchy then appear in several tables. From this follows that an object must be constructed using join of multiple tables associated with the path from the class of this object to the root of hierarchy tree. Other way is to construct an object by a sequence of SELECT statements. Each of the statements selects only those attributes, which was added by one class. This approach corresponds well with the OO platform. To make it possible to join all pieces of one object, each table must contain the additional column OID. OIDs appear to be a good way how to identify objects within one database.

Existing instances:

const class OidBasedPersistentObject OidBasedPersistentObject_class

Prototype instance of the OidBasedPersistentObject class.

Derived from:

PersistentObject

Methods:

 (virtual long int OID() const;

Returns OID of an instance, or zero, if the object is not really persistent (before calling BePersistent() method on it).

(DatabasePointer class

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �O�. DatabasePointer class

A pointer to the database points to one object loaded through a specific database connection and thus it includes database connection identification and object identification too. The same object can be loaded to the memory via two different connections, and can be changed independently in the context of each of the connection. Thus, they can be several different objects with the same OID in the memory. The database pointer points to exactly one object, independently on the fact if the related object is currently presented in the memory or if only its relational representation is available. In time of the access to the specified object through its database pointer, the pointer is automatically dereferenced, i.e. the object is retrieved (if necessary) from the database and placed into the memory. To minimize the amount of database accesses all persistent objects contained currently in the memory will be registered by GEN.LIB and future references to object will be faster.

Methods:

(DatabasePointer(

		DatabaseConnection *aConnection,

		const DatabaseObject *aPrototype,

		char *aSelectKeyValues

);

(DatabasePointer(

		DatabaseConnection *aConnection,

		ObjectIdentification *anIdentification

);

Constructors.	

(virtual BOOL Init(

		DatabaseConnection *aConnection,

		const DatabaseObject *aPrototype,

		char *aSelectKeyValues

);

Like constructor, but only fills already existing DatabasePointer with the given values.

(Database *DatabaseID();

Method was removed. Use „class DatabaseConnection *Connection()“ method.

(class ObjectIdentification *ObjectID() const;

This method is defined on the ObjectReference class.

(class DatabaseObject* IsInMemory() const;

This method is defined on the ObjectReference class.

(BOOL Refresh();

This method is defined on the ObjectReference class.

(BOOL Update();

This method is defined on the ObjectReference class.

(BOOL Free();

This method is defined on the ObjectReference class.

(BOOL Delete();

This method is defined on the ObjectReference class.

(DatabaseObject &ReferencedObject() const;

This method is defined on the ObjectReference class.

(DatabaseObject &ReferencedObject(

		const enum LockingStrategy _Locking_strategy

) const;

This method is defined on the ObjectReference class.

(BOOL operator == (const class DatabasePointer &const DbPtr)const;

Tests, if the objects to which two database pointers point, are the same

(BOOL operator != (const class DatabasePointer &const DbPtr)const;

Tests, if the objects to which two database pointers point, are not the same

(ObjectIdentification class

ObjectIdentification is a class for identificating objects.

(ObjectIdentification(

			const class DatabaseObject *aPrototype,

			const char * const aSelectKeyValues

);

	Construct non-empty identification

(ObjectIdentification(

		const ObjectIdentification & const X

);

	Construct copy of an identification X

(virtual operator ==(

			const ObjectIdentification & const X

) const;

Returns TRUE (implemented as integer), if the object identifications are the same, otherwise FALSE.

(virtual operator !=(

			const ObjectIdentification & const X

) const;

Returns FALSE (implemented as integer), if the object identifications are the same, otherwise TRUE.

(virtual ObjectIdentification &operator =(

			const ObjectIdentification & const X

);

Copy operator.

(DatabaseIdentification class

This class was removed from the GEN.LIB.

Level 2 Module - Interface Module

(GenLibInterface class

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �P�. GenLibInterface class

GEN.LIB interface is one of the interfaces for a communication between the application and the database. (The other way how to manipulate persistent objects and data in database is to call public methods of classes defined in other modules). It provides methods for a work with persistent objects, e.g. for storing and loading objects into or from a database, querying objects or traversing between objects. It also provides the access to the existing relational databases. It can be divided into two interfaces, the inner and the external one, with the meaning written above (see the distinction between methods with the underscore and without the underscore). Methods without the underscore will be the part of the external interface which can be accessed without any restriction. The methods with the underscore will be a part of the internal interface which can be accessed only from the standard methods of GEN.LIB objects.

Existing instances :

class GenLibInterface GenLib

Default GenlibInterface. It must be initialised at the begin of the application using the Init() method, and closed before the end of program using the Done() method.

Methods:

(BOOL Init();

Initialisation part of GEN.LIB. Initialisation will prepare GEN.LIB to be able to do its job. This method is necessary to call before any other action with the database in the application is executed.

possible exceptions:

GenLibException_NoMemory

(class DatabaseObject *IsInMemory(class ObjectReference &Orf);

Access to the object with the test whether it is loaded into the memory. It takes the Database Pointer and returns the pointer to the object in the memory, if it is already loaded or NULL otherwise. It is used as the control before removing the object, updating or refreshing the object (or in all cases, when the object will be accessed).

(BOOL RemoveObject(class ObjectReference &Orf);

Object removing, i.e. unregistration of the object and releasing its memory with the control, whether the object was in the memory or not (if not, it did not occupy any memory and no memory has to be released).

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_MemoryLock

GenLibException_ConnectionError

(BOOL FreeObject(class ObjectReference &Orf);

Newer name of original RemoveObject. This method has the same functionality.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_MemoryLock,

GenLibException_ConnectionError

(BOOL DeleteObject(class ObjectReference &Orf);

Object removing, i.e. unregistration of the object and releasing its memory with the control whether the object was in the memory or not (if not, it did not occupy any memory and no memory has to be released). The object is deleted from the database too.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_MemoryLock

GenLibException_ConnectionError

(BOOL UpdateObject(class ObjectReference &Orf);

Propagation of the object content (if the particular object is marked as dirty) to the database. This method sends this request to the appropriate database pointer.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_ConnectionError

(BOOL RefreshObject(class ObjectReference &Orf);

Re-read of the object from the database. It sends this request to the appropriate database pointer.

possible exceptions:

GenLibException_NoMemory

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(DatabaseObject *MemoryLock(class ObjectReference &Orf);

Memory lock of the object (with semaphore, for example). It sends this request to the appropriate database pointer and returns the memory pointer to the locked object.

possible exceptions:

GenLibException_NoMemory,

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError.

(BOOL MemoryUnlock(class ObjectReference &Orf),

Memory unlock of the locked object.

(unsigned int MemoryLocked(class ObjectReference &Orf),

Test, whether the object is locked in the memory. It returns the number of locks, or zero, if the object is not locked.

(BOOL Sql(char *SqlCommand, class DatabaseConnection &DbConn);

SQL query to the database. It includes some above mentioned operations before the execution, i. e. all objects stored in memory from the same database are updated to assure a consistent state of the database.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_ConnectionError

(BOOL Commit(DatabaseConnection &DbConn);

Finishing and accepting the transaction. It means the saving the objects from the memory to the database and the request to the database to commit.

possible exceptions:

GenLibException_ConnectionError

(BOOL Rollback(DatabaseConnection &DbConn);

Transaction rollback to the state before the beginning of the transaction, removing all the memory objects from the database and the request to the database to rollback.

possible exceptions:

GenLibException_MemoryLock

GenLibException_ConnectionError

(BOOL Savepoint(DatabaseConnection &DbConn, char *Name);

Inserts a savepoint of given name into the current transaction.

possible exceptions:

GenLibException_MemoryLock

GenLibException_ConnectionError

GenLibException_NotSupported

(BOOL RollbackToSavepoint(DatabaseConnection &DbConn, char *Name);

Database rollback back to the savepoint of the given name.

possible exceptions:

GenLibException_MemoryLock

GenLibException_ConnectionError

GenLibException_NotSupported

(class DatabaseConnection *Connect(

			class Database &DB,

			char *User,

			char *Password

);

Connect to the database. It returns pointer to the object DatabaseConnection.

possible exceptions:

GenLibException_NoMemory

GenLibException_ConnectionError

(BOOL Disconnect(DatabaseConnection &DbConnection);	

Database disconnect with COMMIT data.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_MemoryLock

GenLibException_ConnectionError

(BOOL Abort(DatabaseConnection &DbConnection):

Database disconnect with ROLLBACK data.

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_MemoryLock

GenLibException_ConnectionError

(BOOL WriteBackImmediately();

Switch default setting, whether updated objects have to be written to the database immediately.

(BOOL WriteBackOnDemand();

Switch setting, whether updated objects have to be written to the database only on demand.

(BOOL WaitWhenLock();

Sets the default waiting strategy to wait when the locked object is accessed.

(BOOL ErrorWhenLock();

Sets the default waiting strategy to raise an exception when the locked object is accessed.

(BOOL SetLockingStrategy(enum LockingStrategy aLockingStrategy);

Sets default locking strategy that the object should use when it loads itself from the database. Locking strategies for objects can be:

none

objects do not lock the table rows when they load themselves from the database.

useful for retrieving of read-only objects.

shared

objects lock rows with their content in the database explicitly after load in shared mode.

other processes can lock the same object in shared, but not in exclusive, mode too.

exclusive

objects lock rows with their content in database explicitly after load in exclusive mode.

other processes can not lock the same object neither in shared nor in exclusive mode.

The following methods provide the functions similar to the methods of ObjectReference. For more information, see ObjectReference class.

(enum LockingStrategy CurrentLockingStrategy();

(enum UpdateStrategy CurrentUpdateStrategy();

(BOOL SetUpdateStrategy(enum UpdateStrategy anUpdateStrategy);

(enum WaitingStrategy CurrentWaitingStrategy();

(BOOL SetWaitingStrategy(enum WaitingStrategy aWaitingStrategy);

(BOOL Close();

Closes GEN.LIB interface. The Init method must be invoked before any GEN.LIB functionality can be used.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_MemoryLock

GenLibException_NotFound

GenLibException_ConnectionError

Level 2 Module - Query Module

(Relation class

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �Q�. Relation class

We will use the following notions here:

class,

instance,

role method,

objects are linked,

restricted relation,

master object

index.

Relations represent relationships between objects (e.g. teacher teaches students). Because the notion of relation is used in relational databases where it has different meaning than relation between objects, we use the notion of OMT-relation for a relationships between objects.

According to the OMT methodology we consider only binary OMT-relations here. Ternary and more -ary relationships are not supported. This is not a big shortcoming, some commercial products are restricted in the same way too. In practice, most relationships are binary. An OMT-relation links together instances of two classes (first and second or left and right respectively). For example, teachers and students. These two classes have methods named accordingly to the role of the opposite class in the OMT-relation (class Teacher has method Students(), class Student has method Teachers()). Using these methods (role methods), the OMT-relation can be accessed from an instance of the class. But by calling a role method of the object A we obtain only a set of objects which are in OMT-relation with the object A. The object can obtain only the objects which are linked with it. For example, the teacher knows only these students which he teaches. We called this result restricted OMT-relation. Object A, which value determines the restriction, is called master object. But sometimes it is also advantageous to know globally which objects are linked. The restricted OMT-relation can be expanded to the whole OMT-relation by calling method Expand() of the OMT-relation. Each of the linked classes get also additional method with the same name as the name of the OMT-relation (so called relation method).

The member of the OMT-relation is the couple of the objects. We will call the first member of this couple as the left member and the other one as the right member. Accordingly we will use terms „left side“ and „right side“ of the relation to identify the first or the second class related together via a particular OMT-relation.

The OMT relations will be probably implemented as the relational tables in the database. Each row of such table will contain the identification of two objects. First of the identifications will identify object of the first class associated by the OMT-relation (the class on the left side of the OMT-relation) and the second will identify the second one.

OMT-relations should also maintain information about referential integrity (what happens, if, for example, the deleted object was in OMT-relation with other objects: not to allow the deletion, delete related objects too, or set them to the OMT-relation with some default object). The type of the maintenance of referential integrity is decided during the design of the database (in P+ or in ODL - Object Definition Language) and the latest versions of SQL implementation can maintain it automatically. So we left the problem of maintaining referential integrity to the database system. If the system supports constructs of SQL92 for maintaining referential integrity, the referential integrity will be maintained, in other case not.

The items of the OMT-relation can be inserted, deleted and accessed step-by-step. It differs from the Collection (see the specification report SSR01) by a special type of items. The items of OMT-relations are couples of DatabasePointer objects. The OMT-relation also differs from Query Result in the way that query results can not be modified. The changes to the OMT-relations are immediately written to the disk, they are not buffered.

Methods:

(long Count();

Returns the number of the items in the whole or restricted OMT-relation.

(BOOL Prev();

Sets the active position to the previous member in the collection. It returns TRUE, if the setting was successful, otherwise it returns FALSE.

(BOOL Next();

Sets the active position to the next member in the collection. It returns TRUE, if the setting was successful, otherwise it returns FALSE.

(BOOL First();

Sets the active position to the first member in the collection. It returns TRUE, if the setting was successful, otherwise it returns FALSE.

(BOOL Last();

Sets the active position to the last member in the collection. It returns TRUE, if the setting was successful, otherwise it returns FALSE.

(BOOL IsOnFirst();

Returns TRUE, if the index points to the first item of the collection, otherwise it returns FALSE.

(BOOL IsOnLast();

Returns TRUE, if the index points to the last item of the collection, otherwise it returns FALSE.

(BOOL Insert(DatabasePointer N);

Valid only in restricted OMT-relations. It inserts a couple <M, N> or <N, M> (dependent on the side of the restriction) to the OMT-relation, where M is master object. It calls InsertCouple.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(BOOL Delete (DatabasePointer O);

Valid only in restricted OMT-relations. It deletes a pair <M, O> or <O, M> (dependent on the side of the restriction) from the OMT-relation, where M is master object. It calls DeleteCouple.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(DatabasePointer &Get();

Returns the reference to the object on the position given by the index.

(Relation(

		const class DatabaseObject *a_left_prototype,

		const class DatabaseObject *a_right_prototype,

		char *a_table_name,

		class DatabaseConnection *a_database_connection

);

Constructor. Two prototypes supply the types and needed virtual methods of the participating objects. Table name is the name of the relation. The names of the columns of the relational table are generated automatically. See description of the subclasses for details.

(Relation(

		const class DatabaseObject *a_left_prototype,

		const class DatabaseObject *a_right_prototype,

		char *a_table_name,

		class DatabaseConnection *a_database_connection,

		char *a_left_column_name,

		char *a_right_column_name

);

Constructor. In addition to the previous constructor, the names of the columns of the relational table (which will implement OMT-relation) can be specified.

(BOOL Restrict(

		class DatabasePointer &a_restricted_to,

		char a_restriction_side

);

Restricts the OMT-Relation to the given side. The master object will be the object specified by the database pointer.

(BOOL LRestrict(class DatabasePointer &a_restricted_to);

Restricts the OMT-relation to the left side with the master object R on the right side. The restricted OMT-relation will only consist of the objects linked with R.

(BOOL RRestrict(class DatabasePointer &a_restricted_to);

Restricts the OMT-relation to the right side with the master object L on the left side. The restricted OMT-relation will only consist of the objects linked with L.

(BOOL Expand();

Expands the restricted OMT-relation to the expanded (global) one. The expanded OMT-relation has two columns and consists of all the couples which are in the OMT-relation.

(virtual BOOL InsertCouple(DatabasePointer &left, DatabasePointer &right);

Inserts a couple <left, right> to the OMT-relation.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL DeleteCouple(DatabasePointer &left, DatabasePointer &right);

Deletes a couple <left, right> from the OMT-relation.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL LDeleteAll();

Deletes all couples <X, LastRight>.

(virtual BOOL LDeleteAll(class DatabasePointer &right);

Deletes all the objects from the left side of the OMT-relation which are connected with master object R on the right side.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL RDeleteAll();

Deletes all couples <LastLeft, X>

(virtual BOOL RDeleteAll(class DatabasePointer &left);

Deletes all the objects from the right side of the OMT-relation which are connected with master object L on the left side.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL DeleteAll();

Valid only in restricted OMT-relations. It deletes all the pairs <M, O> or <O, M> (dependent on the side of the restriction) from the OMT-relation, where M is master object. It calls DeleteCouple.

(BOOL Delete(DatabasePointer &dbp);

Valid only in restricted OMT-relations. It deletes a pair <M, dbp> or <dbp, M> (dependent on the side of the restriction) from the OMT-relation, where M is master object. It calls DeleteCouple.

(virtual BOOL LInsert(DatabasePointer &left);

Inserts couple <L, _LastRight> into OMT-relation. _LastRight is a DatabasePointer to the last processed right object.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL RInsert(DatabasePointer &right);

Inserts couple <_LastLeft, O> into OMT-relation. _LastLeft is a Database Pointers to the last processed left object.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(BOOL Insert(DatabasePointer &dbp);

Applicable only on restricted relations. Inserts a new object to the set of related objects.

(QueryResult *ExecuteQuery(const Query &Q);

Applicable only on restricted relations. Executes a given Query and returns pointer to a QueryResult object. As a result, the set of the related objects, which satisfies the condition is returned.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *LGetAll(

		const class DatabasePointer &const right,

		const class Query &const query

);

Gets all the objects connected to object "right" according to "query".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *LGetAll(

		const class DatabasePointer &const right

);

Gets all objects connected to object "right".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *LGetAll(

		const class Query &const query

);

Gets all objects connected to object "LastRight" according to "query".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *LGetAll();

Gets all objects connected to object "LastRight".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *RGetAll(

		const class DatabasePointer &const left,

		const class Query &const query

);

Gets all objects connected to object "left" according to "query".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *RGetAll(

		const class DatabasePointer &const left

);

Gets all objects connected to object "left".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *RGetAll(

		const class Query &const query

);

Gets all objects connected to object "LastLeft" according to "query".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *RGetAll();

Gets all objects connected to object "LastLeft"

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *GetAll(

		const class Query &const query

);

Valid only in restricted OMT-relations. It gets all object connected to master object "M" (dependent on the side of the restriction). It calls RGetAll or LGetAll.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *GetAll();

Valid only in restricted OMT-relations. It gets all object connected to master object "M" (dependent on the side of the restriction). It calls RGetAll or LGetAll.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL LExists(

		const class DatabasePointer &const right,

		const class Query &const query

);

Tests if any object connected to object "right" according to "query" exists.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL LExists(

		const class DatabasePointer &const right

);

Tests if any object connected to object "right" exists.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL LExists(

		const class Query &const query

);

Tests if any object connected to object "LastRight" according to "query" exists.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL LExists();

Tests if any object connected to object "LastRight" exists.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL RExists(

		const class DatabasePointer &const left,

		const class Query &const query

);

Tests if any object connected to object "left" according to "query" exists.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL RExists(

		const class DatabasePointer &const left

);

Tests if any object connected to object "left" exists.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL RExists(

		const class Query &const query

);

Tests if any object connected to object "LastLeft" according to "query" exists.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL RExists();

Tests if any object connected to object "LastLeft" exists.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL Exists(

		const class Query &const query

);

Valid only in restricted OMT-relations. It tests if any object connected to master object "M" (dependent on the side of the restriction) exists. It calls RExists or LExists.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL Exists();

Valid only in restricted OMT-relations. It tests if exists any object connected to master object "M" (dependent on the side of the restriction). It calls RExists or LExists.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(OneToOneRelation class

Derived from:

Relation

Methods:

The class has the same methods as the Relation class, redefined to support one to one relationships. It stores the data about relation in both („left“ and „right“) tables. If column names are automatically derived, it concatenates the names of the key columns of the opposite table with the prefix ‘„Table name“_’.

(OneToManyRelation class

Derived from:

Relation

Methods:

The class has the same methods as the Relation class, redefined to support one to many relationships. It stores the data about relation in the „right“ table. If column names are automatically derived, it concatenates the names of the key columns of the „left“ table with the prefix ‘„Table name“_’.

(ManyToManyRelation class

Derived from:

Relation

Methods:

The class has the same methods as the Relation class, redefined to support many to many relationships. It stores the data about relation in the separate table, which name is specified in the constructor. If column names are automatically derived, the names of key columns of the left participating class are concatenated with the prefix ‘L_’ and the second names are concatenated with the prefix ‘R_’..

(Query class

Query to a database is applied to the DatabaseObject class or its descendants. It returns an instance of the QueryResult class. This QueryResult has not any relationship to the Query object. QueryResult keeps all necessary information to access all retrieved objects. We can execute queries operating only on one class (each instance of a subclass is, however, the instance of each of its own superclasses). In the time the query is executed, no instance of the target class must be available. If we want to construct a query as the join of different tables, we must design appropriate DatabaseObject subclass to retrieve required information. This query has more limited accessories for querying, e.g. with respect to SQL. The Query Result is a collection of objects, respective a collection of DatabasePointers. The items of the result must be consistent with the queryfied object type. Query can be sent to arbitrary instance including prototype, the functionality will be the same.

Existing instances :

const class Query ALL

A Query, which returns all instances of the target class. It contains no additional condition.

Methods :

(Query (const char *const a_where);

Constructor for an unsorted query. The other parts of the query (select, from and key condition) are stored in the object to which the query is sent.

(Query (const char *const a_where,

		const char *const a_order_by

);

Constructor for sorted query.

(Query (const Query &const X);

Copy constructor for Query instance. It sets the WHERE clause.

(char *Where() const;

Returns Where clause held by the query.

(BOOL Where(const char * const a_where);

Sets Where clause of the query. Where clause of the query is concatenated (through ‘and’ condition) with the where clause of the object to which the query is sent.

(Query &Not();

(Query operator !() const;

Provide query negation. Query negation in this context means the query complement.

possible exceptions:

GenLibException_NoMemory

(Query &Or(const Query & const Q),

(Query operator ||(const Query & const Q) const;

Provide disjunction of two queries. It corresponds to the conjunction of their conditions with OR.

possible exceptions:

GenLibException_NoMemory

(Query &And(const Query & const Q),

(Query operator &&(const Query & const Q) const;

Provide conjunction of two queries. It corresponds to the conjunction of their conditions with AND.

possible exceptions:

GenLibException_NoMemory

(char *OrderBy() const;

Returns the ORDER BY clause held by the Query.

(BOOL OrderBy(const char * const a_order_by);:

Sets the ORDER BY clause held by the Query.

possible exceptions:

GenLibException_NoMemory

(Query &Query::operator =(const Query &X);

Copies a Query into another Query.

(QueryResult class

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �R�. QueryResult class

An instance of the QueryResult class is produced by evaluating a query on the database. The query result consists of the collection of the items which identify unique resulting object (i.e. the instances of the DatabaseObject directly, or the object identifications in case of PersistentObject result) which satisfy the criteria given in the query. QueryResult stores the command which invoked it. When QueryResult is returned, it must be opened before it can be traversed. In contrast to its ancestor, OrderedCollection, QueryResult can not be modified. No additional objects can be inserted into it. The QueryResult must be closed after finishing the work with it.

Query results will be probably implemented by database cursors. The work with them is similar to the work with cursors in a RDBMS.

Methods:

(long Count();

Returns the number of the items in the collection.

(BOOL Prev();

Sets the index to the previous object in the collection. It returns TRUE if the setting was successful, otherwise it returns FALSE.

(BOOL Next();

Sets the index to the next object in the collection. It returns TRUE, if the setting was successful, otherwise it returns FALSE.

(BOOL First();

Sets the index to the first object in the collection. It returns TRUE, if the setting was successful, otherwise it returns FALSE.

(BOOL Last();

Sets the index to the last object in the collection. It returns TRUE, if the setting was successful, otherwise it returns FALSE.

(BOOL IsOnFirst();

Returns TRUE, if the index points to the first item of the collection, otherwise it returns FALSE.

(BOOL IsOnLast();

Returns TRUE, if the index points to the last item of the collection, otherwise it returns FALSE.

(virtual class ObjectReference *Get();

Returns the reference to the resulted object on the position given by the index (by the position of the database cursor in the result).

Returns a pointer instead of the reference (as was written in the previous version of the document).

(virtual class ObjectReference *GetNext();

Sets the index to the next object in the collection. if succeds, returns the reference to the resulted object on the position given by the index (by the position of the database cursor in the result).

(BOOL GoToPosition (long Pos);

Sets the index to the given position. Next calling of Get returns the Pos-th item of the collection.

(long Position();

Returns the current value of the index.

(QueryResult(const Query *a_query,

		const DatabaseObject 	*a_prototype,

		DatabaseConnection 	*a_database_connection);

(QueryResult(const Query *a_query,

		const DatabaseObject *a_prototype,

		char *a_sql_select,

		DatabaseConnection 	*a_database_connection);

(BOOL Open();

Stored command is executed.

possible exceptions:

GenLibException_NoMemory

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_MemoryLock

GenLibException_NotFound

GenLibException_ConnectionError

(BOOL Close();

Closes retrieved set of objects. By closing the QueryResult, the cursor attached to it is closed. After closing, QueryResult can be reopened by sending Open message. When QueryResult is closed, no operation except Open can be invoked on it.

(QueryResultOnPersistentObject class

This class was removed. No subclasses of the QueryResult class are needed.

(QueryResultOnOidBasedPersistentObject class

This class was removed. No subclasses of the QueryResult class are needed.

Use of GEN.LIB in applications

Persistent classes defined in GEN.LIB are abstract. Persistency of the classes defined by the developer is to be done only via specialisation of those classes.

Multiple inheritance of persistent objects

Multiple inheritance of persistent object is not solved in GEN.LIB. It is possible to create class with more persistent parents, but some actions on PersistentObject will be invoked more times (once for each path from new class to PersistentObject class). Avoiding this behaviour is in the developer responsibility.

Virtual load of objects

Virtual load of persistent object is not solved in GEN.LIB. When OidBasedPersistentObject descendant (for example PersistentPerson) will be retrieved from database, an object of the specified type (PersistentPerson) will be retrieved, even if object with specified OID is deeper in the inheritance tree (for example PersistentDirector). Adding this feature is in the developer responsibility.

Impact of GEN.LIB use to application

Because GEN.LIB is responsible for data integrity as well as the memory management of persistent objects, the application must follow the described requirements:

The application can use only GEN.LIB to access a database. Any bypassing GEN.LIB during database access may cause a data corruption.

The application can not make additional memory copies of persistent objects. By doing it, the application may cause inconsistent data content, because memory locations of those copies will be unknown to GEN.LIB interface. Any change of such additional copy may not be reflected in the database.

Persistent classes can not contain other persistent classes. This situation must be solved by using of the one to one association between classes.

All attributes of any persistent class which correspond to columns in database table must follow here described rules (it is possible to generate all tests automatically from object definition):

The attributes must be compatible with one of database types:

NUMBER

DATE

CHAR (N)

VARCHAR (N)

They should be declared as private or protected.

Together with each non-key attribute AttrName, access method AttrName(newValue) for write should be declared. two access methods AttrName() for read and AttrName(newValue) for write must be declared. The method AttrName(newValue) must call method MarkAsDirty() at the end of itself.

Possible future extensions of GEN.LIB

In future, the functionality of GEN.LIB can be extended using additional tools, which, of course, are not part of ADOORE project.

Usage of ODL for persistent object description

In this document we present application development path (see � REF _Ref346696035 * LOWER �figure a development path of gen.lib based application�), where persistent classes definitions and their methods, which communicates with database, are generated using P+ script. The other approach is to use P+ script to generate not directly C++ source code, but object definitions in ODL, proposed by the standard ODMG-93 (see e.g.: Cattel, R. G. G: The Object Database Standard: ODMG-93, Morgan Kaufmann publishers, San Mateo, California, 1994). Its object model (called ODL) seems to be very similar to the OMT model. Moreover, all leading companies in OODBMS technology support this object model. Translation of object definitions described in ODL to C++ code may be done by selfstanding program. This approach allows user to use for OOA of application not only P+, but any environment compatible with ODMG-93 standard.

Source code generation for accessing existing tables

Describing access to external database tables (created by other standard database applications built not on GEN.LIB) which exist independently on the developed application in database (for example personal registers), we have supposed that the source code of associated classes is written manually (see � REF _Ref346696035 * LOWER �figure a development path of gen.lib based application�). However, it is possible to create this code automatically according to database table definition stored in the data dictionary.

Events Propagation

This section presents GEN.LIB from the dynamic point of view. We describe scenarios for situations and actions which occurs and must be done by application during its interaction with our library. This section describes the way how to:

initialise work with library

create persistent objects

work with transactions

use of savepoints in transaction

create new persistent object

build a query

select objects from database

obtain associated objects

obtain association (relation)

Detailed event-trace diagrams, describing reactions of all in this specification defined objects to all possible events, are not included in this document. We suppose, that this information is a part of the system design step of the application development process. Therefore, those event trace diagrams will be included in the GEN.LIB design report.

�
External Events Propagation through Domain Objects

Initialisation of the work with library

Before the library can be used by the application, it must be initialised. Before stopping the application, the library must be closed to finish all database accesses correctly. This protocol is shown on following figure.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �S� - Scenario 1: GEN.LIB initialisation and closing

�
Connecting to and disconnecting from database

Before the application can access database objects, it must connect to database, represented by the descendant of Database object. The Database object must be assigned to a concrete database server.

After the connection is established, the application obtains an instance of DatabaseConnection class to communicate with. The connection may be closed either with commit or with rollback of current transaction.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �T� - Scenario 2: Database connections and disconnections

�
Transaction control

GEN.LIB supports transaction control. Application can split time spent between connection to database and disconnection from database to more database transactions. The first transaction starts when the application connects to database. After one transaction is either committed or rolled back, the next transaction starts automatically.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �U� - Scenario 3: Transaction control

�
Savepoints

In addition to transaction control the application can put named savepoints into current transaction. Using savepoints, the application can return the transaction to each of existing savepoints. Whenever the transaction is rolled back to a savepoint, all savepoints created after this one are destroyed. After the transaction is committed or rolled back to the beginning, all existing savepoints in the transaction are destroyed.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �V� - Scenario 4: Savepoints

�
Creating of new persistent object

In this section, a persistent object is any object whose class is derived from the OidBasedPersistentObject class. New instance is created as usually only in memory. To bind its content to database, the application should call the BePersistent() method of this new instance.

It is better to set all attributes of this new instance to correct values before BePersitent() method is called, because no database actions must be done.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �W� - Scenario 5: New persistent object creation

�
Queries

Query is the object class, which contains WHERE and ORDER BY clauses of the database query. There will be defined AND, OR and NOT operation on this class to ensure creating more complex queries.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �X� - Scenario 6: Queries

�
Selecting persistent objects

In this section, a persistent object is any object whose class is derived from the DatabaseObject class. To select objects from database according to theirs content, the application must create appropriate Query, and send the query to the correct class. As a result of this operation the application obtains instance of correct QueryResult descendant. The application must open the result and then it can get objects from the result in the sequential order. After all objects from result are accessed, QueryResult should be closed. After closing, QueryResult can be reopened again. Each time QueryResult opens, the query is executed again.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �Y� Scenario 7: Query execution

�
Obtaining all associated objects

To obtain all associated objects, the method with the same name as the role of the associated object(s) which should be defined in the application on that class must be invoked. The application obtains an restricted instance of Relation class. Using ExecuteQuery(ALL) or GetAll() method, the QueryResult with all associated objects is obtained. In addition the application can insert new associated objects to an association, delete an associations to objects etc.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �Z� - Scenario 8: Obtaining all associated objects

�
Work with associations between objects

To obtain the association between persistent objects, the application must call a method with the same name as name of the association which should be defined by the user on both of two associated classes,. It obtains instance of the Relation class. Having an association, the application can insert new couples into this association, can delete old couples (i.e. only the information about association between these two objects, not those two objects) and so on.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ALPHABETIC �AA� - Scenario 9: Obtaining of association between objects

��
	Contract Number : CP94-764�	Document Reference :SSR01\CU\KOP61029 \C�
�

System Specification Report	 � DATE \l �24.10.1996�	Page � PAGE �58�

