Project Number :	764

Project Acronym :	ADOORE

Contract Number :	CP94-00764

Project Start Date :	1 March 1995

ADOORE Consortium :	Objectif Technologie (France)

	IQSOFT (Hungary)

	Charles University (Czech Republic)

	DCIT (Czech Republic)

�

Document Name :	System Design Report, volume 1/2 (October 1997)

Document Author(s) :	M. Prokes, M. Kopecky, J. Pokorny (Charles University)

Document Reference :	SDR01\CU\PRO61130\PRO71030.DOC\C

Circulation :	ADOORE Consortium

The information contained in this document is subject to change without notice and should not be construed as a commitment by any members of the ADOORE Consortium. In the event of any software or algorithms being described in this report, the ADOORE Consortium assumes no responsibility for the use or inability to use any of its software or algorithms. The information is provided without any warranty of any kind and the ADOORE Consortium expressly disclaims all implied warranties, including but not limited to the implied warranties of merchantability and fitness for a particular use.

Commission of the European Communities

Copernicus Programme

Document identification

Title : System Design Report, volume 1/2�����Author(s) : M. Prokes, M. Kopecky, J. Pokorny�Company Id. : CU��Project Reference : SDR01�Organisation Reference : PRO61130��Support : PRO71030.DOC, PRO71031.DOC�����Validated by :

Objectif Technologie

DCIT�Validation Date : ��Distribution : ADOORE Consortium�����Abstract :

This report presents the GEN.LIB system design.

This file contains only a part of the system design report. The second volume has file name PRO71031.DOC�����Versions :����Status :�Date :�Observations & Modifications :��A

B

C����Validated

Validated

Work�29-03-1996

30-11-1996

30-10-1997�Original version

Modifications according to the implementation and the modifications asked by reviewers

Modification according to the release 1.0.7���CONTENTS

� OBSAH \o "1-5" \t "Contents;1" �CONTENTS	� TLAČPŘEJÍTNA _Toc402936684 � ODKNASTR _Toc402936684 �3��

FIGURES	� TLAČPŘEJÍTNA _Toc402936685 � ODKNASTR _Toc402936685 �6��

TABLES	� TLAČPŘEJÍTNA _Toc402936686 � ODKNASTR _Toc402936686 �7��

1. GENERAL PRESENTATION OF GEN.LIB	� TLAČPŘEJÍTNA _Toc402936687 � ODKNASTR _Toc402936687 �8��

1.1. Document goal	� TLAČPŘEJÍTNA _Toc402936688 � ODKNASTR _Toc402936688 �8��

1.2. Definitions, Abbreviations and Terminology	� TLAČPŘEJÍTNA _Toc402936689 � ODKNASTR _Toc402936689 �8��

1.3. Applicable Documentation	� TLAČPŘEJÍTNA _Toc402936690 � ODKNASTR _Toc402936690 �8��

1.4. The main extensions made to the Genlib	� TLAČPŘEJÍTNA _Toc402936691 � ODKNASTR _Toc402936691 �9��

1.4.1. Changes done from the previous release (1.0.6) of the library:	� TLAČPŘEJÍTNA _Toc402936692 � ODKNASTR _Toc402936692 �9��

2. GEN.LIB DESCRIPTION	� TLAČPŘEJÍTNA _Toc402936693 � ODKNASTR _Toc402936693 �10��

2.1. Software Environment	� TLAČPŘEJÍTNA _Toc402936694 � ODKNASTR _Toc402936694 �10��

2.2. Design Principles	� TLAČPŘEJÍTNA _Toc402936695 � ODKNASTR _Toc402936695 �11��

2.3. Main Modules Identification and Organisation	� TLAČPŘEJÍTNA _Toc402936696 � ODKNASTR _Toc402936696 �11��

3. MODULE DESCRIPTION	� TLAČPŘEJÍTNA _Toc402936697 � ODKNASTR _Toc402936697 �15��

3.1. Internal library - char * operations	� TLAČPŘEJÍTNA _Toc402936698 � ODKNASTR _Toc402936698 �15��

3.2. Internal library - Types (Strategies)	� TLAČPŘEJÍTNA _Toc402936699 � ODKNASTR _Toc402936699 �20��

3.3. Internal library - Exceptions	� TLAČPŘEJÍTNA _Toc402936700 � ODKNASTR _Toc402936700 �21��

3.3.1. GenLibException class	� TLAČPŘEJÍTNA _Toc402936701 � ODKNASTR _Toc402936701 �22��

3.3.2. GenLibException_ConnectionError class	� TLAČPŘEJÍTNA _Toc402936702 � ODKNASTR _Toc402936702 �22��

3.3.3. GenLibException_NotSupported class	� TLAČPŘEJÍTNA _Toc402936703 � ODKNASTR _Toc402936703 �22��

3.3.4. GenLibException_SqlError class	� TLAČPŘEJÍTNA _Toc402936704 � ODKNASTR _Toc402936704 �23��

3.3.5. GenLibException_DatabaseLock class	� TLAČPŘEJÍTNA _Toc402936705 � ODKNASTR _Toc402936705 �23��

3.3.6. GenLibException_MemoryLock class	� TLAČPŘEJÍTNA _Toc402936706 � ODKNASTR _Toc402936706 �23��

3.3.7. GenLibException_NoMemory class	� TLAČPŘEJÍTNA _Toc402936707 � ODKNASTR _Toc402936707 �23��

3.3.8. GenLibException_NotFound class	� TLAČPŘEJÍTNA _Toc402936708 � ODKNASTR _Toc402936708 �23��

3.4. Internal library - SQL commands	� TLAČPŘEJÍTNA _Toc402936709 � ODKNASTR _Toc402936709 �24��

3.4.1. Cmd class	� TLAČPŘEJÍTNA _Toc402936710 � ODKNASTR _Toc402936710 �24��

3.4.2. Cmd0 class	� TLAČPŘEJÍTNA _Toc402936711 � ODKNASTR _Toc402936711 �25��

3.4.3. Cmd1 class	� TLAČPŘEJÍTNA _Toc402936712 � ODKNASTR _Toc402936712 �25��

3.4.4. CmdCommit class	� TLAČPŘEJÍTNA _Toc402936713 � ODKNASTR _Toc402936713 �25��

3.4.5. CmdRollback class	� TLAČPŘEJÍTNA _Toc402936714 � ODKNASTR _Toc402936714 �26��

3.4.6. CmdSavepoint class	� TLAČPŘEJÍTNA _Toc402936715 � ODKNASTR _Toc402936715 �26��

3.4.7. CmdRollbackToSavepoint class	� TLAČPŘEJÍTNA _Toc402936716 � ODKNASTR _Toc402936716 �26��

3.4.8. CmdSql class	� TLAČPŘEJÍTNA _Toc402936717 � ODKNASTR _Toc402936717 �26��

3.5. Level 1 module - Database Dependent Module	� TLAČPŘEJÍTNA _Toc402936718 � ODKNASTR _Toc402936718 �27��

3.5.1. Database class	� TLAČPŘEJÍTNA _Toc402936719 � ODKNASTR _Toc402936719 �27��

3.5.2. Oracle7Database class	� TLAČPŘEJÍTNA _Toc402936720 � ODKNASTR _Toc402936720 �31��

3.5.3. DatabaseConnection class	� TLAČPŘEJÍTNA _Toc402936721 � ODKNASTR _Toc402936721 �32��

3.5.4. Oracle7DatabaseConnection class	� TLAČPŘEJÍTNA _Toc402936722 � ODKNASTR _Toc402936722 �41��

3.5.5. Cursor class	� TLAČPŘEJÍTNA _Toc402936723 � ODKNASTR _Toc402936723 �41��

3.5.6. Oracle7Cursor class	� TLAČPŘEJÍTNA _Toc402936724 � ODKNASTR _Toc402936724 �45��

3.6. Level 1 Module - Database Independent Module	� TLAČPŘEJÍTNA _Toc402936725 � ODKNASTR _Toc402936725 �45��

3.7. Level 2 Module - Persistent Object Module	� TLAČPŘEJÍTNA _Toc402936726 � ODKNASTR _Toc402936726 �46��

3.7.1. ObjectReference class	� TLAČPŘEJÍTNA _Toc402936727 � ODKNASTR _Toc402936727 �48��

3.7.2. DatabaseObject class	� TLAČPŘEJÍTNA _Toc402936728 � ODKNASTR _Toc402936728 �64��

3.7.3. PersistentObject class	� TLAČPŘEJÍTNA _Toc402936729 � ODKNASTR _Toc402936729 �72��

3.7.4. OidBasedPersistentObject class	� TLAČPŘEJÍTNA _Toc402936730 � ODKNASTR _Toc402936730 �74��

3.7.5. DatabasePointer class	� TLAČPŘEJÍTNA _Toc402936731 � ODKNASTR _Toc402936731 �76��

3.7.6. ObjectIdentification class	� TLAČPŘEJÍTNA _Toc402936732 � ODKNASTR _Toc402936732 �78��

3.8. Level 2 Module - Interface Module	� TLAČPŘEJÍTNA _Toc402936733 � ODKNASTR _Toc402936733 �80��

3.8.1. GenLibInterface class	� TLAČPŘEJÍTNA _Toc402936734 � ODKNASTR _Toc402936734 �80��

3.9. Level 2 Module - Query Module	� TLAČPŘEJÍTNA _Toc402936735 � ODKNASTR _Toc402936735 �91��

3.9.1. Relation class	� TLAČPŘEJÍTNA _Toc402936736 � ODKNASTR _Toc402936736 �91��

3.9.2. OneToOneRelation class	� TLAČPŘEJÍTNA _Toc402936737 � ODKNASTR _Toc402936737 �108��

3.9.3. OneToManyRelation class	� TLAČPŘEJÍTNA _Toc402936738 � ODKNASTR _Toc402936738 �108��

3.9.4. ManyToManyRelation class	� TLAČPŘEJÍTNA _Toc402936739 � ODKNASTR _Toc402936739 �109��

3.9.5. Query class	� TLAČPŘEJÍTNA _Toc402936740 � ODKNASTR _Toc402936740 �109��

3.9.6. ComplexQuery class	� TLAČPŘEJÍTNA _Toc402936741 � ODKNASTR _Toc402936741 �112��

3.9.7. QueryResult class	� TLAČPŘEJÍTNA _Toc402936742 � ODKNASTR _Toc402936742 �113��

3.10. Level 2 Module - Buffer Module	� TLAČPŘEJÍTNA _Toc402936743 � ODKNASTR _Toc402936743 �117��

3.10.1. ObjectBuffer class	� TLAČPŘEJÍTNA _Toc402936744 � ODKNASTR _Toc402936744 �117��

3.10.2. BufferItem class	� TLAČPŘEJÍTNA _Toc402936745 � ODKNASTR _Toc402936745 �125��

�

�Figures

� OBSAH \c "Figure" �Figure 1 - Role of GEN.LIB in the application	� TLAČPŘEJÍTNA _Toc400513743 � ODKNASTR _Toc400513743 �11��

Figure 2 - Main GEN.LIB modules	� TLAČPŘEJÍTNA _Toc400513744 � ODKNASTR _Toc400513744 �12��

Figure 3 - GEN.LIB modules - detailed view	� TLAČPŘEJÍTNA _Toc400513745 � ODKNASTR _Toc400513745 �14��

Figure 4. Class hierarchy for exceptions	� TLAČPŘEJÍTNA _Toc400513746 � ODKNASTR _Toc400513746 �22��

Figure 5. Class hierarchy for commands	� TLAČPŘEJÍTNA _Toc400513747 � ODKNASTR _Toc400513747 �24��

Figure 6. Database class	� TLAČPŘEJÍTNA _Toc400513748 � ODKNASTR _Toc400513748 �27��

Figure 7. DatabaseConnection class	� TLAČPŘEJÍTNA _Toc400513749 � ODKNASTR _Toc400513749 �32��

Figure 8. ObjectReference class	� TLAČPŘEJÍTNA _Toc400513750 � ODKNASTR _Toc400513750 �48��

Figure 9. DatabaseObject class	� TLAČPŘEJÍTNA _Toc400513751 � ODKNASTR _Toc400513751 �65��

Figure 10. PersistentObject class	� TLAČPŘEJÍTNA _Toc400513752 � ODKNASTR _Toc400513752 �72��

Figure 11. OidBasedPersistentObject class	� TLAČPŘEJÍTNA _Toc400513753 � ODKNASTR _Toc400513753 �74��

Figure 12. DatabasePointer class	� TLAČPŘEJÍTNA _Toc400513754 � ODKNASTR _Toc400513754 �76��

Figure 13. GenLibInterface class	� TLAČPŘEJÍTNA _Toc400513755 � ODKNASTR _Toc400513755 �80��

Figure 14. Relation class	� TLAČPŘEJÍTNA _Toc400513756 � ODKNASTR _Toc400513756 �91��

Figure 15. QueryResult class	� TLAČPŘEJÍTNA _Toc400513757 � ODKNASTR _Toc400513757 �113��

Figure 16 - ObjectBuffer class	� TLAČPŘEJÍTNA _Toc400513758 � ODKNASTR _Toc400513758 �117��

Figure 17 - BufferItem class	� TLAČPŘEJÍTNA _Toc400513759 � ODKNASTR _Toc400513759 �125��

��Tables

� OBSAH \c "Table" �Table 1. LockingStrategy type	� TLAČPŘEJÍTNA _Toc400513760 � ODKNASTR _Toc400513760 �20��

Table 2. WaitingStrategy type	� TLAČPŘEJÍTNA _Toc400513761 � ODKNASTR _Toc400513761 �21��

Table 3. UpdateStrategy type	� TLAČPŘEJÍTNA _Toc400513762 � ODKNASTR _Toc400513762 �21��

Table 4 - CLERK database table	� TLAČPŘEJÍTNA _Toc400513763 � ODKNASTR _Toc400513763 �66��

Table 5 - DEPT database table	� TLAČPŘEJÍTNA _Toc400513764 � ODKNASTR _Toc400513764 �66��

�General Presentation of GEN.LIB

Document goal

Based on general GEN.LIB requirements (see WR03\OT\OT565\95.1129\A), ADOORE Quality Plan (see QAP\OT\OT537\95.516\B) and Software Specification (see SSR01\CU\KOP61029.DOC\C), this document summarises the results of the GEN.LIB system design as planed in the project objectives formulated in WP2 (GEN.LIB development).

The design consists of two fundamental parts: � ODK _Ref349368643 * MALÁ �module description� (Section � ODK _Ref372328799 \n �3�) and events propagation (Section 4).

Definitions, Abbreviations and Terminology

GEN.LIB	General Library

OID	Object Identifier

P+	Paradigm plus

SQL	Structured Query Language

RDBMS	Relational Database Management System

Applicable Documentation

WR03\OT\OT565\95.1129\A: WP2-Task 2.1: Work Session Report

QAP\OT\OT537\95.516\B: ADOORE Quality Plan

RWR\DC\TR60106\A: Technical review of Charles University GEN.LIB

RWR\DC\TR60216\A: Technical review of Charles University GEN.LIB

RWR02\OT\OT619\95.1629\A: C++ GEN.LIB Specification Review Report

SSR01\CU\KOP61029.DOC\C: Software Specification Report

SDR01\CU\KOP61030.DOC\B: Previous version of the System Design Report

The main extensions made to the Genlib

Changes done from the previous release (1.0.6) of the library:

Bugs discovered during exploatation of the library either by both the WISE development team at the DCIT company and GEN.LIB development team at the Charles University were fixed.

Possibility to test existence of particular couple of objects in the OMT�relation were added.

GEN.LIB in the current version (1.0.7) provides services needed to manipulation with polymorph results, which contain instances of not only exactly one class but more different sub�classes of expected class.

We found several types of changes made to the design during evolution from the previous version 1.0.6 to the current version 1.0.7. To allow better readability of this document and easily comparison with the version B of it, we marked the classes as well as their methods according to changes made. The used marks are:

(unchanged method (in previous version already existing class)

(new method (class) added to the GEN.LIB since the 1.0.6 was released

(method fixed after GEN.LIB 1.0.6 release, during the exploatation

GEN.LIB Description

Software Environment

GEN.LIB is a general library which provides an interface between the application, based on OMT, and SQL database engine for the persistent data storage. Both GEN.LIB and application are supposed to be developed using C++ programming language. GEN.LIB will be developed to provide a database access to the ORACLE database server. As a tool for OO analysis and application design the CASE product Paradigm+ was chosen. This tool can be helpful not only for above mentioned purpose, but it can be used during GEN.LIB based application development. According to designed class hierarchies Paradigm+ provides automatic C++ code generation,. In the principle, all code needed for database access, including method definitions for all of the other methods of designed objects can be generated using P+. The resulted library will be available for the SunOS version 5.4 (Solaris 2.4).

GEN.LIB is a library which manages the persistency of application domain objects using relational database servers. Moreover, it presents rows of external (by other application maintained) tables as C++ objects. Thus, GEN.LIB is, in general, an interface between two different paradigms: a bridge between object oriented paradigm on the side of a client and relational database server on the other side. The position of GEN.LIB in an application is shown on the � ODK _Ref372330164 * MALÁ �figure 1 - role of gen.lib in the application�.

�

Figure � POŘ Figure * ARABSKÉ �1� - Role of GEN.LIB in the application

Design Principles

Besides of the standard SQL, commercial RDBMS differ each other in the syntax of some commands as well as in the communication protocol between application and SQL server. One of the main goals of the GEN.LIB specification is to make it as much independent on used database server as possible. The way how to achieve maximal database independence is to identify all database dependent actions and locate them separately from other services. The second way is to split each of the database dependent actions into two pieces and to implement the database dependent part separately as a self-standing service. This splitting of the services allows a more efficient portation of GEN.LIB from the ORACLE server to different database engines.

In our solution of GEN.LIB, the objects, whose values must be stored permanently, are mapped to appropriate database tables. Each attribute of such class is mapped to some particular column of such database table.

Main Modules Identification and Organisation

As described in section � ODK _Ref351361564 \n �2.2�, we split GEN.LIB into two main modules according to the database dependency of source code. The first module is database dependent. It means, that its code must be rewritten each time the programmer wants to access different database server. The second module is database independent and it uses the services provided by the lower laying database dependent part for the database accesses instead of direct Embedded SQL communication.

The above described situation is shown on � ODK _Ref349372411 * MALÁ �figure 2 - main gen.lib modules�.

�

Figure � POŘ Figure * ARABSKÉ �2� - Main GEN.LIB modules

The DatabaseDependent module implements three classes: Database, DatabaseConnection and Cursor. Those classes represent an abstraction of the database server, of the connection to the database server and of the database cursor. Each of those three classes should have one descendant, which implements the code for the communication with one family of the database servers. In the GEN.LIB the classes Oracle7Database, Oracle7DatabaseConnection and Oracle7Cursor for accessing of the Oracle7 database servers will be implemented.

The DatabaseIndependent module covers most of the functionality of GEN.LIB, and for the communication with the database server uses low-level services provided by the database dependent module. According to its functionality inside the GEN.LIB library it is useful to divide DatabaseIndependent module into four subsystems. Each subsystem has its own role in the GEN.LIB architecture.

First, there is a Buffer Module. This is the only module of GEN.LIB completely invisible from outside of GEN.LIB. Its role in the system is to speed up an access to persistent objects. In the typical object application, each object is not accessed regularly, in the equidistant time intervals, but more accesses occurs in short time, followed by longer interval without any activity on the same object. To avoid unnecessary database accesses each time when any of the defined methods of object is called or its attribute is read or written, the Buffer Module holds the last recently accessed objects in the memory as long as possible. For the application, the access to objects is transparent. Thus, the application refers to objects independently on the fact, if the accessed object is currently in the buffer or not. If a particular object is in memory, the application reference is translated into the memory pointer directly. If object is not in the memory, the buffer reads data from the database, builds the object instance, and remembers its memory pointer for a future references.

Second, there is Persistent Module. It contains DatabaseObject and DatabasePointer classes, their common ancestor ObjectReference and their descendants. Its role in GEN.LIB is to access persistent objects according to their unique identifications, called database pointers in our specification and design due to similarity between the usage of the DatabasePointers and standard pointers in the C++ programming.

Third, a Query Module is present in the GEN.LIB. Its main responsibility is to allow the access to the stored data according to their inner values. In addition to this functionality this module maintains the relations between classes (instances of classes), because obtaining of all instances associated with some concrete instance is similar to obtaining of all instances of some class, which satisfies some condition about its contents. Using of some SQL query is for example the only way how to obtain first data from the database at the start time of the application, because no pointer to stored data is known to the application. Having at least one object (or its pointer) known, the application can start usual process of spreading activity by traversing from object to object using associations between the instances of the object classes. There are present classes Query, QueryResult and Relation in this module together with their descendants.

Fourth, Interface Module supports the communication between the application and GEN.LIB library.

Communication paths between modules are shown on � ODK _Ref372330607 * MALÁ �figure 3 - gen.lib modules - detailed view�.

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �3� - GEN.LIB modules - detailed view

Module Description

In this section, all modules are discussed one by one. You can find there a description of all level 1 modules, level 2 modules and internal libraries. Internal libraries defines sets of C++ types, sets of simple C++ classes or sets of global C++ functions. Items defined in those internal libraries are database independent and the defined items are used in both the database dependent and database independent modules.

(Internal library - char * operations

One of the main functionality of the GEN.LIB is based on construction of correct SQL statements. The SQL statement is a character string, which must be build from selfstanding fragments, defined in the DatabaseObject class hierarchy. Those fragments must be combined in proper way with the constant strings like “SELECT “, “GROUP BY “ etc., or they must be enclosed in the brackets. The standard C++ functions for the manipulating with the character strings is insufficient, so the enhanced functions must be added.

(int Strlen(const char * const src)

Counts number of chars in src, returns 0 if src == NULL

(char *Strcpy(char * (&dst), const char * const src)

Copies the source src into destination dst. Frees previously allocated memory for the dst. Allocates the memory for new dst

(char *Strexp(char * dst, const char * src, int len)

Copies the source src into the destination dst. The buffer for the result must already exists, because it is not allocated inside this function. The maximal number of the copied character is len. The copy of the source is terminated by \0 char, so the buffer must be at least len+1 characters long.

(int Strcmp(const char * const dst, const char * const src)

compares the source src with the destination dst. Returns zero if the strings are equal and non–zero if the strings differs each from the other.

(char *Strfree(char * (&dst))

Frees a dynamically allocated string.

(char *Strcat(char * (&dst), const char * const src)

Concatenates dst and src in the given order. Method frees previously allocated memory for dst and allocates memory for the result.

(char *Strcat(char * (&dst), const int n, const char * const src, ...)

Concatenates the strings src_1, ... , src_n to the dst in the given order. Method frees a previously allocated memory for dst and allocates a memory for the result.

(char *StrAnd(char * (&dst), const char * const src)

Returns a string in form "(dst) AND (src)". Method frees the previously allocated memory for dst and allocates a memory for the result.

(char *StrOr(char * (&dst), const char * const src)

Returns a string in form "(dst) OR (src)". Method frees the previously allocated memory for dst and allocates a memory for the result.

(char *StrNot(char * (&dst))

Returns a string in form "NOT(dst)". Method frees the previously allocated memory for dst and allocates a memory for the result.

(char *StrClause(char * (&dst), const char * const prf);

Returns a string in form "prf dst " if dst is not empty. If dst is the empty string, returns NULL.

examples:

		StrClause("ID = 100", "WHERE") == "WHERE ID = 100 "

		StrClause(NULL,"WHERE") == NULL

Method frees the previously allocated memory for dst and allocates a memory for the result.

(void StrSwap(const char * (&s1), const char * (&s2));

Swaps two strings s1 and s2.

(char *StrSplit(char * (&src), const char delim, char * (&dst));

Splits the string src in form "dst delim rest_of_string". This method returns dst in the separate string and the rest_of_string in original variable src. Method frees the previously allocated memory for dst and allocates a memory for the result.

(char *StrPrefix(char * (&src), const char delim, char * (&dst));

This function is similar to the StrSplit() function. But if no delimiter is found in the string src, it returns dst == NULL, meanwhile StrSplit() returns src == NULL

(char *StrPrefixCut(char * (&src), const char delim);

This function is similar to the StrPrefix() function, but doesn’t return the prefix. The prefix is cut off and forgotten.

(char *LongToStr(const long n);

Returns long number n as a char* and allocates space for the result.

(char *StrMergeLists (

char * (&dst),

char * (&list1), char * (&list2),

const char lists_delimiter,

const char sep_begin,

const char sep_values

const char sep_middle,

const char sep_end

);

char *StrMergeLists (

char * (&dst),

char * (&list1), char * (&list2),

const char lists_delimiter, const char prefix_delimiter,

const char sep_begin,

const char sep_values

const char sep_couples,

const char sep_end

);

Those two functions provide most complicated string manipulation in the library. They are used to merge two lists of values, separated by the lists_delimiter characters and return its results in the dst parameter and also as a return value. It is supposed that both lists contain the same number of values. If the number of values is different, only the number of values contained in the shorter list is processed. Processing is done in the following way.

Values are taken one by one from both lists.

If the prefix_delimiter is specified (second variant) values are searched for prefix and existing prefixes are removed.

Couple of values from both lists are put together and separated by the sep_values string.

Couples are separated using the sep_couples string.

Before the first couple is put the sep_begin string.

After the last couple is put the sep_end string.

The rests of lists are emptied.

These two function allow to transform two lists

“T.A, T.B, T.C, T.D“

“1, 2, 3, 4“

to strings

“WHERE (T.A = 1) AND (T.B = 2) AND (T.C = 3) AND (T.D = 4)

lists_delimiter == ‘,’

prefix_delimiter is not used

sep_begin == “WHERE “

sep_values == “ = “

sep_couples == “) AND (“,

sep_end == “)“

“SET A = 1, B = 2, C = 3, D = 4

lists_delimiter == ‘,’

prefix_delimiter == ‘.’

sep_begin == “SET “

sep_values == “ = “

sep_couples == “, “,

sep_end == NULL

etc.

(Internal library - Types (Strategies)

To provide strategies for locking objects, updating objects in the database and waiting for locked objects, we introduced three enumerated types, LockingStrategy, UpdateStrategy and WaitingStrategy. The values of these types are described in the following tables.

(enum LockingStrategy

� VLOŽIT Excel.Sheet.5 ���

Table � POŘ Table * ARABSKÉ �1�. LockingStrategy type

(enum WaitingStrategy

� VLOŽIT Excel.Sheet.5 ���

Table � POŘ Table * ARABSKÉ �2�. WaitingStrategy type

(enum UpdateStrategy

� VLOŽIT Excel.Sheet.5 ���

Table � POŘ Table * ARABSKÉ �3�. UpdateStrategy type

(Internal library - Exceptions

During execution of GEN.LIB based application, some exceptions may appear due to incorrect work of database server, network layers of software, incorrect use of GEN.LIB services, insufficient amount of resources (memory), etc. These exceptions are represented by classes, derived from common predecessor GenLibException.

These exceptions are described below. They are the successors of the GenLibException class in the class hierarchy (see the figure).

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �4�. Class hierarchy for exceptions

(GenLibException class

This is a common abstract predecessor of all exception classes.

Public methods:

(virtual const char *Name();

Returns the name of the exception as a string.

(GenLibException_ConnectionError class

This exception is thrown, if GEN.LIB can't communicate with the database server.

derived from:

GenLibException

(GenLibException_NotSupported class

This exception is thrown, whenever GEN.LIB tries to use any feature, which is not supported by the used SQL engine.

derived from:

GenLibException

(GenLibException_SqlError class

This exception is thrown, if the database server does not recognise SQL command due to either syntax error, or semantic error (table not exists, etc.).

derived from:

GenLibException

(GenLibException_DatabaseLock class

This exception is thrown, if the specified object can’t be retrieved from database because the table row, representing object is locked by another connection.

derived from:

GenLibException

(GenLibException_MemoryLock class

This exception is thrown, if the specified object can’t be freed, because it is currently locked on a fixed address of memory.

derived from:

GenLibException

(GenLibException_NoMemory class

This exception is thrown, if there is not enough memory to complete operation.

derived from:

GenLibException

(GenLibException_NotFound class

This exception is thrown, if the specified data were not found.

derived from:

GenLibException

(Internal library - SQL commands

(Cmd class

This class contains encapsulated SQL command, executable on the DatabaseConnection.

It is possible to send such a command to the instance of the DatabaseConnection class using << operator (see the description of the DatabaseConnection class). Commands make a small object hierarchy. The hierarchy is shown on the following figure.

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �5�. Class hierarchy for commands

Methods:

(virtual BOOL ExecuteCommand(class DatabaseConnection &DbConn) const;

Executes the command on the given database connection.

 (Cmd0 class

Makes a common predecessor for the SQL commands with no arguments.

derived from:

Cmd

 (Cmd1 class

Makes a common predecessor for the SQL commands with single argument.

Protected attributes:

(char *_param1;

The parameter of the SQL command;

Public methods:

(Cmd1(const char * const a_param1);

The constructor with the one parameter.

(Cmd1 &operator = (const Cmd1 &Src);

The copy operator.

derived from:

Cmd

(CmdCommit class

The class representing SQL command Commit.

derived from:

Cmd0

 (CmdRollback class

The class representing SQL command Rollback.

derived from:

Cmd0

 (CmdSavepoint class

The class representing SQL command Savepoint.

(CmdSavepoint(const char *const a_name);

Constructor; a_name is the name of the savepoint.

(CmdSavepoint(const CmdSavepoint &Src);

Copy constructor.

derived from:

Cmd1

(CmdRollbackToSavepoint class

The class representing restoring savepoint with rollback.

(CmdRollbackToSavepoint(const char *const a_name);

Constructor; a_name is the name of the savepoint.

(CmdRollbackToSavepoint(const CmdRollbackToSavepoint &Src);

Copy constructor.

derived from:

Cmd1

(CmdSql class

	The class representing SQL command.

(CmdSql(const char *const a_sql);

Constructor.

(CmdSql(const CmdSql &Src);

Copy constructor.

derived from:

Cmd1

(Level 1 module - Database Dependent Module

Database dependent module implements all database dependent routines and makes the rest of GEN.LIB independent on used database.

This module consists of two classes:

Database

DatabaseConnection

(Database class

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �6�. Database class

Database class is the internal representation of a database engine. It is a part of the database dependent module. This class is abstract and all its methods must be redefined in a concrete subclass to allow the access to the real database engine.

The class Database maintains the handles of all the database connections opened. Each instance of the class Database maintains the handles of its database connections.

In addition, each database contains the connect string, which is used to connect to the database.

Attributes:

(char *_ConnectString;

The string used when connecting to the database. For example in the Oracle this string contains the communication protocol used for the client/server communication, the name of the host computer and the identifier of the database instance separated by the colons. An example of the syntactically valid connect string is „@T:athos.mff.cuni.cz:ADOORE“.

(class DatabaseConnection *_Connections[MAX_CONNECTION_PER_DATABASE];

This array holds all the connections connected to the database (local connections).

 (int _FreeConnections[MAX_CONNECTION_PER_DATABASE];

This array speeds up searching for free slot in the _Connections array. Each item of this array holds the index of the next free connection to the particular database, which can be used again. In such a way the list of free connection handles is implemented. The head of the list contains the attribute _FirstFreeConnection. When the connection is freed, its local index is assigned to _FirstFreeConnection and the freed connection is inserted to the head of the list.

(int _FirstFreeConnection;

This variable contains the index to the array of local connections of the first free connection.

Static attributes:

(static class DatabaseConnection *_AllConnections[MAX_CONNECTION];

This array holds all the connections opened in the system.

(static int _FreeAllConnections[MAX_CONNECTION];

This array speeds up searching for free slot in the _AllConnections array. Each item of this array holds the index of the next free connection, which can be used again. In such a way the list of free connection handles is implemented. The head of the list contains the attribute _FirstFreeAllConnection. When the connection is freed, its local index is assigned to _FirstFreeAllConnection and the freed connection is inserted to the head of the list.

(static int _FirstFreeAllConnection;

The head of the list of free slots in _AllConnections array. The list is implemented by the array _FreeAllConnections. The variable _FirstFreeAllConections contains the index of the first free connection in the array _AllConnection and is the head of the list.

Protected methods:

(BOOL _FindFreeConnectionHandles(int &LocHandle, int &GlobHandle);

Returns the handle of the first free connection in the system and the handle of the first free connection to the particular database in the arguments. Returns TRUE, if is successful.

(void _DisposeConnectionHandles(int &LocHandle, int &GlobHandle);

Release the connection. NULLs are inserted to associated positions in arrays _AllConnections and _Connections. Indexes of these positions are inserted as the heads of the lists of empty slots in these arrays.

(virtual BOOL _Commit();

Sends _Commit to all the connections of the database. In contrast to Commit, _Commit does not update objects of the connection (i.e. it does not store the changed objects to the database) before execution SQL command COMMIT.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_ConnectionError

(virtual BOOL _Rollback();

Sends _Rollback to all the connections of the database. In contrast to Rollback, _Rollback does not destroy all the objects in the memory after executing SQL command ROLLBACK.

possible exceptions:

GenLibException_ConnectionError

(virtual char * _get_string_identification();

Returns the identification of the Database as a string. It has no use yet.

Methods:

(Database(const char *ConnectString);

Creates a database with the given connect string.

(BOOL Assign(const char *connect_string);

Assigns internal representation of database to a database server.

(BOOL Commit();

Finishing and accepting all the transactions on the database. It means the saving the objects from the memory to the database and the request to the database to commit. After saving the method _Commit is called.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_ConnectionError

(BOOL Rollback();

Transaction rollback to the state at the beginning of the any transaction on the database. All of the memory objects from the same database are disposed from the memory, because there can be stored newer (and thus invalid) data in the memory.

possible exceptions:

GenLibException_ConnectionError

(DatabaseConnection *Connect(const char *user, const char *password);

Connect to the database. It returns a pointer to the newly created object DatabaseConnection.

Calls DatabaseConnection::DatabaseConnection.

possible exceptions:

GenLibException_ConnectionError

(Oracle7Database class

The example of one possible subclass of the Database class for the Oracle version 7.0 database engine.

Derived from:

Database

Methods:

The same methods as Database class redefined in the way they can communicate with Oracle RDBMS version 7.

(DatabaseConnection class

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �7�. DatabaseConnection class

It represents one database connection. Notice that there can be more connections to the particular physical database. Database connections has a cursor associated with it. This cursor serves when executing SQL command on the connection.

Protected attributes:

(char *_UserName;					

User's login name.

(char *_Password;

User's password.

(class Database *_Database;	

The database this connection is connected to.

 (int _Handle;					

The index of this connection in the global table of connections.

(int _LocalHandle;

The index of this connection in the local table (table of particular database) of connections.

(class Cursor *_DefaultCursor;

Default cursor, which is used when sending SQL command to the connection.

Protected methods:

(DatabaseConnection(

 class Database *DB, const char *UserName, const char *Password,

 const int LocHandle, 			const int GlobHandle

);

The constructor. It is protected to avoid unauthorised manipulation. This method is called by Database::Connect.

(char *_GetUserName();

Returns the value of the attribute _UserName.

(char *_GetPassword();

Returns the value of the attribute _Password.

(virtual BOOL _Sql(const char *SqlCommand);

Sends a SQL command to the connection. In contrast to the method Sql, _Sql does not update all the objects in the connection, i.e. it does not store these objects in the database before executing SQL command. This method is called by the method Sql.

Moved from Database class.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_ConnectionError

(virtual BOOL _Commit();

Sends Commit to all the connections of the database. In contrast to Commit, _Commit does not update objects of the connection (i.e. it does not store the changed objects to the database) before executing SQL command COMMIT. This method is called by the method Commit.

Moved from Database class.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_ConnectionError

(virtual BOOL _Rollback();

Sends Rollback to all the connections of the database. In contrast to Rollback, _Rollback does not destroy all the objects in the memory after executing SQL command ROLLBACK. This method is called by the method Rollback.

Moved from Database class.

possible exceptions:

GenLibException_ConnectionError.

(virtual BOOL _Savepoint(const char *Name);

Creates a savepoint. In contrast to Savepoint, _Savepoint does not save the modified objects to the database (does not call Update) before the action. This method is called by Savepoint.

Moved from Database class.

possible exceptions:

GenLibException_ConnectionError,

GenLibException_NotSupported.

(virtual BOOL _RollbackToSavepoint(const char *Name);

Transaction rollback to the state given by the savepoint. In contrast to RollbackToSavePoint, _RollbackToSavepoint does not remove all the objects from the memory after the action. This method is called by RollbackToSavepoint.

Moved from Database class.

possible exceptions:

GenLibException_ConnectionError,

GenLibException_NotSupported.

(virtual Cursor *_GetNewCursor();

Obtaining new cursor. Calls the constructor of the _DefaultCursor.

possible exceptions:

GenLibException_ConnectionError,

GenLibException_NoMemory.

(virtual BOOL _Open();

The space for the cursor is created. Calls the method of the _DefaultCursor.

possible exceptions:

GenLibException_ConnectionError.

(virtual BOOL _Prepare(const char *SqlCommand);

The syntax check of the SQL command is performed (does exist tables, columns and indexes listed in the command ?). Calls the method of the _DefaultCursor.

possible exceptions:

GenLibException_SqlError,

GenLibException_ConnectionError.

(virtual BOOL _PreExecBind(

const char *const VarName,

const void *VarAddr,

const int VarLen,

const char VarType

);

The bound variables in the SQL commands are bound to the values. Calls the method of the _DefaultCursor.

possible exceptions:

GenLibException_ConnectionError.

(virtual BOOL _Execute();

The SQL command is executed and the cursor is filled by the results. Calls the method of the _DefaultCursor.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_ConnectionError.

(virtual BOOL _PreFetchBind(

const int Position,

const void *VarAddr,

 	const int VarLen,

	const char VarType

);

The output variables of the SQL command listed in the clause INTO are bound to the output values of the query. Calls the method of the _DefaultCursor.

possible exceptions:

GenLibException_ConnectionError.

(virtual BOOL _FetchNext();

Fetches the next tuple from the cursor. Calls the method of the _DefaultCursor. If the next value is not available, this method returns FALSE, otherwise TRUE.

possible exceptions:

GenLibException_ConnectionError,

GenLibException_NotSupported.

(virtual BOOL _FetchPrev();

Fetches the previous tuple from the cursor. Calls the method of the _DefaultCursor. If the previous value is not available, this method returns FALSE, otherwise TRUE.

possible exceptions:

GenLibException_ConnectionError,

GenLibException_NotSupported.

(virtual BOOL _Close();

Closes the cursor. Calls the method of the _DefaultCursor

possible exceptions:

GenLibException_ConnectionError.

Methods :

(virtual DatabaseConnection &operator << (const char *SqlCommand);

Sends a SQL command specified by string to the connection. The function is a shortcut for Sql(const char * sql).

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock,

GenLibException_ConnectionError

(DatabaseConnection &operator << (const class Cmd &Command);

Sends a command specified by the object from GENLIB class Cmd to the connection.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock,

GenLibException_ConnectionError

GenLibException_NotSupported

(BOOL operator == (const class DatabaseConnection &DbConn) const;

Tests, if the Database connections are the same.

(BOOL operator != (const class DatabaseConnection &DbConn) const;

Tests, if the Database connections are not the same.

(virtual BOOL Sql(const char *SqlCommand);

SQL query to the database. This function can be issued also by using the command „<< CmdSql(SqlCommand)“ or command „<< SqlCommand“. It includes some above mentioned operations before the execution, i. e. all objects stored in memory from the same database are updated to assure a consistent state of database.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_ConnectionError

(virtual BOOL Commit();

Finishing and accepting the transaction. It means the saving the objects from the memory to the database and the request to the database to commit. This function can be issued also by using the command „<< CmdCommit()“.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_ConnectionError

(virtual BOOL Rollback();

Transaction rollback to the state before the beginning of the transaction, removing all the memory objects from the database and the request to the database to rollback. This function can be issued also by using the command „<< CmdRollback()“.

possible exceptions:

GenLibException_ConnectionError

(virtual BOOL Savepoint(const char *Name);

Inserts a savepoint of the given name into the current transaction. This function can be issued also by using the command „<< CmdSavepoint(char *)“.

possible exceptions:

GenLibException_ConnectionError

GenLibException_NotSupported

(virtual BOOL RollbackToSavepoint(const char *Name);

Database rollback to savepoint of the given name. The changes made between savepoint and current state of the database are cancelled. This function can be issued also by using the command „<< CmdRollbackToSavepoint(char *)“.

possible exceptions:

GenLibException_ConnectionError

GenLibException_NotSupported

(virtual BOOL Disconnect();

Database disconnect with COMMIT data. The database connection will be destroyed. It sends to itself the Commit command (to store the object to the database).

possible exceptions:

GenLibException_MemoryLock

GenLibException_ConnectionError

(virtual BOOL Abort();

Database disconnect with ROLLBACK data. The objects from the memory are not stored to the database.

possible exceptions:

GenLibException_MemoryLock

GenLibException_ConnectionError

(Oracle7DatabaseConnection class

Derived from:

DatabaseConnection

Protected attribute:

(volatile Lda_Def _LDA;

Oracle Logon Data Area. Oracle uses this attribute when connecting to the database. LDA is passed as a parameter in some OCI (Oracle Call Interfaces) routines. LDA must be allocated by the user program, just like the host data area and cursor data area.

(volatile ub1 _HDA[HDA_SIZE];

Oracle Host Data Area. Its contents are entirely private to ORACLE, but the HDA must be allocated by the user program, just like the logon data area and cursor data area. Each concurrent logon requires one LDA-HDA pair.

Methods:

The same methods as DatabaseConnection class redefined in the way to allow to the application to communicate with Oracle RDBMS version 7.

(Cursor class

Class cursor serves is an encapsulation for the database cursor.

� VLOŽIT Word.Picture.6 ���

Protected attributes:

(class DatabaseConnection *_DatabaseConnection;

Pointer to the associated database connection.

(BOOL _Opened;

TRUE, if the cursor is opened, otherwise FALSE.

Protected methods:

(Cursor(class DatabaseConnection *DbC);

Constructor. Creates a cursor for the database connection. It is hidden to avoid unauthorised manipulation.

(virtual BOOL _Open()

The space for the cursor is created.

possible exceptions:

GenLibException_ConnectionError.

(virtual BOOL _Prepare(const char *SqlCommand)

The syntax check of the SQL command is performed (does exist tables, columns and indexes listed in the command ?).

possible exceptions:

GenLibException_SqlError,

GenLibException_ConnectionError.

(virtual BOOL _PreExecBind(

 	 const char *const VarName, const void *VarAddr, const int VarLen, 	const char VarType

);

The bound variables in the SQL commands are bound to the values. Calls the method of the _DefaultCursor.

possible exceptions:

GenLibException_ConnectionError.

(virtual BOOL _Execute();

The SQL command is executed and the cursor is filled by the results. Calls the method of the _DefaultCursor.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_ConnectionError.

(virtual BOOL _PreFetchBind(

	const int Position, const void *VarAddr, const int VarLen, const char VarType

);

The output variables of the SQL command listed in the clause INTO are bound to the output values of the query. Calls the method of the _DefaultCursor.

possible exceptions:

GenLibException_ConnectionError.

(virtual BOOL _FetchNext();

Fetches the next tuple from the cursor. If the next value is not available, this method returns FALSE, otherwise TRUE.

possible exceptions:

GenLibException_ConnectionError,

GenLibException_NotFound,

GenLibException_NotSupported.

(virtual BOOL _FetchPrev();

Fetches the previous tuple from the cursor. If the database server does not support this feature, the cursor is re-executed and appropriate number of _FetchNext() is executed. If the previous not available, this method returns FALSE, otherwise TRUE.

possible exceptions:

GenLibException_ConnectionError,

GenLibException_NotSupported.

(virtual long _Position();

Returns the number of the current row of the cursor. See _FetchPrev.

possible exceptions:

GenLibException_ConnectionError,

GenLibException_NotSupported

(virtual BOOL _Close();

Closes the (opened) cursor.

possible exceptions:

GenLibException_ConnectionError.

(char *_GetUserName();

Returns the user name stored in the associated connection.

(char *_GetPassword();

Returns the password stored in the associated connection.

(Oracle7Cursor class

Derived from:

Cursor

Protected attribute:

(volatile Cda_Def _CDA;

Oracle Cursor Data Area. The CDA is a 64-byte data buffer that serves as the connection between program and the ORACLE context area (context area holds and process information about the execution of a single SQL statement). CDA must be allocated by the user program, just like the logon data area and host data area.

Methods:

The same methods as Cursor class redefined in the way to allow to the application to communicate with Oracle RDBMS version 7. Almost each of the methods calls one function defined in the OCI (Oracle Call Interface).

(Level 1 Module - Database Independent Module

Database independent module is divided into four submodules:

Persistent Object Module

Interface Module

Buffer Module

Query Module

(Level 2 Module - Persistent Object Module

This part of GEN.LIB maintains persistency of objects, which is one of the most important part of GEN.LIB. Persistent objects are used in these three slightly different situations:

First, they acts as real persistent objects, which use relational database to achieve their own persistency. In this situation they can create appropriate database tables for representing their contents. This type of objects can use database tables to represent object hierarchy according to object specialisation. Each derived class is responsible only for mapping, load and store of its own attributes to one database table. For handling with attributes of its predecessors, parent methods can be called. This methodology correspond well to object oriented paradigm.

Second, they provide an access to standard database tables. In this case the object structure must be constructed according to the existing table. All persistent attributes of an object must correspond with some column of only one database table.

Third the object can represent result of query execution. The contents of those objects must not correspond to any row of database table, but they can be resulted from complex SQL query. This type of object is useful for accessing data constructed from stored information. For example, let suppose the table

EMP(EMPNO, NAME, DEPTNO, SALARY)

in database. We want to obtain average salary for each department. In SQL, we can construct the query like:

SELECT DEPTNO, AVG(SALARY)

FROM EMP

GROUP BY DEPTNO;

Each row of result can be represent as an object with two attributes:

	short deptno;

	double avg_salary;

This third type of objects serves for read-only access to database. Changes of instances do not imply changes in the database. In many cases, changes are impossible, because data in an object do not correspond directly to database, but they may be derived from them, e.g. as the attribute avg_salary in the previous example.

These three ways of persistent object access will implemented by three abstract classes in GEN.LIB. Each of them will implement one of discussed strategies:

DatabaseObject

Its content is constructed via any SQL select query.

It is possible to select data from more tables joint.

Using of GROUP BY and HAVING clauses, aggregate function operators are allowed.

Object structure must be compatible with query result.

Object changes are not propagated to database.

PersistentObject

Its content is constructed via restricted set of SQL select queries.

Select may access data in one table only.

Using of GROUP BY and HAVING clauses, aggregate function operators is not allowed.

Object structure must be compatible with the accessed table structure.

Object changes are propagated to an appropriate row of database table.

OidBasedPersistentObjects

The class is similar to PersistentObject with following differences:

Object has special primary key called OID (Object Identification).

OID is unique in the database.

It supports specialisation hierarchy of classes, parent data are stored separately in other tables and handled by predecessors.

(ObjectReference class

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �8�. ObjectReference class

The class ObjectReference is the common ancestor of classes DatabasePointer and DatabaseObject. The class ObjectReference is an abstract class, its successors redefine its methods. Most methods are implemented in the class DatabaseObject. The methods of the class DatabasePointer usual simply test the presence of the referenced object in the memory and then propagate calling of the corresponding methods to the DatabaseObject. For example, the method DatabasePointer::Update() calls the method DatabaseObject::Update() if the object is in memory. The instances of the DatabaseObject class and of its successors reference to themselves.

Protected Attributes:

(class DatabaseConnection *_DatabaseConnection;

Holds the database connection through which the object is loaded/saved from/to the database.

Protected methods:

(virtual class DatabaseObject * _New() const ;

Constructs a new empty transient variant of the same type as the referenced object (the constructed object is not stored in the database). Unlike in New, the tests, if the new object can be created in the memory (that is, if it is free place in the memory) are not performed.

This method should be rewritten by the user. Usually it will contain only C++ command new with the name of the new class as an argument.

(virtual BOOL _Free();

This method is private, but the user of GENLIB should be aware of it. This method should be called at the beginning of the destructor of the user-defined objects.

(virtual BOOL _Duplicate(ObjectReference *reference);

Duplicates DatabasePointer or DatabaseObject. This method is not intended to be used for the PersistentObject and its successors. The calling object is filled by the contents of reference.

(virtual int _DatabaseFieldsCount() const;

Returns the number of the attributes of the object associated with the table columns. In contrast to DatabaseFieldsCount, which returns only the number of the columns associated with the last table in the hierarchy chain, the _DatabaseFieldsCount returns the number of the columns in the join of all the tables in the hierarchy chain.

(virtual void _DatabaseFieldInfo(int i, void *&addr, char &ctype, int &clen) const;

Similar to DatabaseFieldInfo. The difference is in the scope. While DatabaseFieldInfo gathers information about the last table in the hierarchy chain, _DatabaseFieldInfo gathers the information from the whole object. The relation between these two methods is similar to the relation between the methods DatabaseFieldsCount and _DatabaseFieldsCount. See DatabaseFieldInfo.

(virtual BOOL _MarkAsClean();

Marks the referenced object as clean. Only dirty (changed, not clean) objects are written to the database when flushing the buffer. Called by Update().

(virtual BOOL _OidBased() const;

Returns TRUE, if the class of the instance is derived from the OidBasedPersistentObject class. Otherwise returns FALSE.

(static const DatabaseObject *_FindPrototype(const char *const class_name);

This method finds and returns the address of the prototype of the class, associated with the database table named class_name. If the class is not derived from the OidBasedPersistentObject class (see description of the ObjectReference::_OidBased() method), or the prototype of the class was not registered first (see description of the ObjectReference::RegisterClass() method), this method returns NULL.

(virtual class ObjectReference &_TypeCast(const char *const class_name);

Typecasts the DatabasePointer (changes the pointer to the prototype) to point to the class associated with the given database table. Does nothing for different descendants.

Methods:

(#define REF(ORF,T) ((T &)(ORF)->ReferencedObject())

Returns the reference to the object, typecasted to (T &). (Because the method ReferencedObject returns DatabaseObject &).

(#define PTR(ORF,T) ((T *)(ORF)->IsInMemory())

Similar to the previous macro, returns the memory pointer instead of the reference. The pointer is retrieved by calling method IsInMemory.

(#define VREF(ORF,T) ((T &)(ORF).Virtualise()->ReferencedObject())

This macro does the same work as the REF one, but in case of database pointers it corrects first the pointer to the prototype to point to the prototype of the referenced instance. This correction needs one additional database access.

(#define VPTR(ORF,T) ((T *)(ORF) .Virtualise()->IsInMemory())

This macro does the same work as the PTR one, but in case of database pointers it corrects first the pointer to the prototype to point to the prototype of the referenced instance. This correction needs one additional database access.

(virtual class DatabaseObject &ReferencedObject() const;

Returns the reference to the pointed object which will be read from the database, if the object is not present in memory yet. DatabaseObject and its successors return themselves.

possible exceptions:

GenLibException_NoMemory,

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Get object from database

(virtual DatabaseObject &ReferencedObject (

 const enum LockingStrategy _Locking_strategy

) const;

Returns reference to the pointed object which will be read from the database, if object is not present in memory. To load the object a predefined locking strategy will be used instead of default one.

possible exceptions:

GenLibException_NoMemory,

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Get object from database

(DatabaseObject *operator ->() const;

Returns the pointer to the pointed object which will be read from the database, if the object is not present in memory yet.

possible exceptions:

GenLibException_NoMemory,

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Get object from database

(DatabaseObject &operator *() const;

Returns the reference to the pointed object which will be read from the database, if the object is not present in memory yet.

possible exceptions:

GenLibException_NoMemory,

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Get object from database

(virtual DatabaseObject* IsInMemory() const;

If the object is present in the memory, returns the pointer to the object (all the pure database objects, some of persistent objects), otherwise returns NULL.

(virtual class DatabaseConnection *Connection() const;

Returns the pointer to the database connection through which the referenced object is (should be) loaded. If referenced object is not really persistent, returns NULL.

(virtual class ObjectIdentification *ObjectID() const;

Returns pointer to the unique identification of an object within a database where it is stored. It means a pointer to a correct prototype and a tuple of values of primary key (OID in case of the oid based persistent object instances). Members of the returned tuple should be separated by commas.

(virtual const class DatabaseObject *Prototype() const;

Returns a pointer to a prototype instance of the referenced class. Each concrete DatabaseObject subclass must have one (constant) empty instance of itself in the memory. This instance serves as the knowledge base about the class. We suggest to name those prototypes NameOfTheClass_class, where NameOfTheClass is the class name.

(virtual const class DatabaseObject *ParentPrototype() const;

Returns a pointer to a prototype instance of the parent of the referenced class

The next group of methods takes care of the communication with the database.

These procedures are necessary, because the database server (OCI functions of Oracle) demands the addresses of variables, but the C++ program can not say the address of its variables during run-time. For example, server demands the addresses of the variables to bind them before it returns a cursor with the answer to the query

(virtual int DatabaseFieldsCount() const;

Returns the number of the attributes (which are associated with the database table columns) added by the referenced class. It is necessary to know, how many embedded variables will be populated by reading one object from the database. See ObjectReference::_DatabaseFieldsCount.

(virtual void DatabaseFieldInfo(

		int i, void *&addr, char &ctype, int &clen

);

Takes an integer i (which means the sequential number of the attribute) as the input and returns the address of the associated memory variable, the type of the C variable, and the length of the associated memory variable (buffer). To each type of C++ corresponds one character. Supported types are:

‘c’	char

‘s’	char *

‘i’	int

‘l’	long

‘u’	unsigned int

‘f ’	float

‘d’	double

This method must be redefined by the user. If the user rewrites this method to return zero as the value of clen parameter, then the proper length is set according to size of the required type automatically. The string variables must return the maximal length of the string, and associated buffer must be at least one character longer (for trailing ‘\0’ character).

The following methods were mostly propagated from DatabaseObject class. They return the parts of the SQL command, which constructs the object. In most cases, the methods have two names, for compatibility with the previous version of the specification.

(virtual char *SelectClause() const;

(virtual char *ColumnNames() const;

This virtual method returns the names of the attributes of a database object, i.e. columns from SELECT clause of the SQL query.

(virtual char *FromClause() const ;

(virtual char *TableNames() const;

Table names from the FROM clause of the SQL query, which constructs an object.

(virtual char *WhereClause() const;

(virtual char *WherePrefix() const;

The basic part of every condition placed in the WHERE clause of the SQL query. Only those rows which meet with this condition are retrieved as objects from database. If this string is not empty and someone executes on this class a query which selects only specified rows using some additional condition, the WherePrefix() is concatenated with WHERE clause in used query via AND operator. The WherePrefix() must return a NULL string in PersistentObject class and their ancestors.

(virtual char *IntoClause() const;

(virtual char *SqlVars() const;

SQL variables from the INTO clause of the SQL query, which constructs the object.

(virtual char *GroupByClause() const;

(virtual char *GroupByColumns() const;

Attributes of the GROUP BY clause of the SQL query, which constructs objects of this class. It must return an empty string in PersistentObject class and its ancestors.

(virtual char *HavingClause() const;

(virtual char *HavingCondition() const;

Condition of the HAVING clause of the SQL query, which constructs the object. It must return an empty string in PersistentObject class and its ancestors.

(virtual char *SelectKeyClause() const;

(virtual char *KeyColumnNames() const;

These methods retrieve the names of the key column(s), which will be used to create this object. For OidBasedPersistentObjects they return OID column. For PrimaryKeyPersistentObjects, i.e. the objects corresponding to the rows of the relational database, these methods return the set of key columns.

(virtual char *IntoKeyClause() const;

(virtual char *KeySqlVars();

These methods return the names of the SQL variables associated with the key columns of the object. The names begins with colons and are separated by commas. Those symbolic names can not begin with the underscore.

It is recommended, that Into variables should be either global or static within the class.

(virtual char *FromKeyClause() const;

(virtual char *KeyTableNames() const;

Return the name of the table, the object must be deleted from. Clause From is used only in SQL command DELETE. The function returns only the name of single table. The deletion from the other tables, from which the object is build, is guaranteed by cascaded deletion.

(virtual char *SelectKeyValues() const ;

Returns a list of key values identifying the object. The values are separated by commas.

(virtual char *WhereKeyClause(BOOL WithoutTablenames = FALSE) const;

Where clause for the key to be used to create this instance. Can be empty in the DatabaseObject class. If parameter WithoutTablenames is set to TRUE, names of the tables are removed from the column specifications.

The following methods are similar to the methods described above. The difference is, that the above methods concerned to single table, and the following methods concern to all the tables, from which the object is constructed.

(virtual char *SelectAllClause() const;

(virtual char *FromAllClause() const;

(virtual char *WhereAllClause() const;

(virtual char *IntoAllClause() const;

Those symbolic names can not begin with the underscore. It is recommended, that Into variables should be global or static within the class.

(virtual BOOL IsDirty() const ;	

Returns True, if an object is marked as dirty (e.g. the object was changed in the memory).

(virtual BOOL MarkAsDirty();

Marks a referenced object as „dirty“. Only dirty (changed) persistent objects are written to the database when flushing the buffer.

(virtual BOOL Refresh()

It copies an object from disk to the memory again. Returns TRUE, if it succeed.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Reload object from database

(virtual BOOL Update();		

Writes an object from the memory to the disk.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_MemoryLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Store object in database

(virtual class DatabaseObject * New() const;	

Constructs a new empty transient variant of a referenced object of the same type as the receiver object (the constructed object is not stored in the database).

possible exceptions:

GenLibException_NoMemory

(virtual BOOL Free()

Tries to destroy the object in the memory only. Succeeds if all the tests (for example, if the object is not locked) are passed successfully.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_MemoryLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Delete persistent object from memory

(virtual BOOL Delete()

Tries to destroy an object from the memory as well as from the database. Succeeds if all the tests (for example, if the object is not locked) are passed successfully.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_MemoryLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Delete persistent object completely

(virtual class DatabaseObject *MemoryLock()	

Locks a persistent object. Multiple locks can be placed on the object. The object can be

removed from memory only when all the locks are released.

possible exceptions:

GenLibException_NoMemory

covered external events:

Lock object in memory

(virtual BOOL MemoryUnlock();

Unlocks a persistent object in memory. See MemoryLock.

covered external events:

Unlock object in memory

(virtual unsigned int MemoryLocked() const ;

Returns the number of memory locks on receiver or zero if it is not locked.

(virtual BOOL RemoveAllMemoryLocks();

Releases all memory locks on the referenced instance.

(virtual BOOL IsTransient() const;

Returns TRUE if an instance of the referenced object is transient, i.e. if it has no copy in database. This can happen if the object was created as transient and was not made persistent by calling BePersistent yet.

(virtual BOOL IsPersistent() const ;

Returns TRUE if the object is really persistent, otherwise it returns FALSE. This function returns the opposite value to the method IsTransient.

(virtual class DatabasePointer &BePersistent(DatabaseConnection *DbCon)

Causes an object to be persistent. Persistent objects are created as transient (they exist only in memory) and when it is needed (all attributes are set to appropriate values), then they can be converted to true persistent objects. An advantage is that transient objects do not propagate into a database while persistent objects are written (in spite of buffering mechanism) to the database often.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_ConnectionError

(virtual BOOL WriteBackImmediately()

Sets the attribute _UpdateStrategy to propagate the changes on the object immediately into the database.

covered external events:

Write objects back to database immediately

(virtual BOOL WriteBackOnDemand();

Sets the attribute _UpdateStrategy to propagate the changes on the object into the database, when it is demanded by calling Update method.

covered external events:

Write objects back to database on demand

(virtual enum UpdateStrategy CurrentUpdateStrategy() const;

Returns the current value of _UpdateStrategy attribute.

(virtual BOOL SetUpdateStrategy(enum UpdateStrategy anUpdateStrategy);

Sets the value of _UpdateStrategy attribute.

(virtual BOOL WaitWhenLock();

Sets the attribute _WaitingStrategy to wait when the locked object is accessed.

(virtual BOOL ErrorWhenLock();

Sets the attribute _Waiting strategy to raise an error when the locked object is accessed.

(virtual enum WaitingStrategy CurrentWaitingStrategy() const;

Returns the current value of _WaitingStrategy attribute.

(virtual BOOL SetWaitingStrategy(enum WaitingStrategy aWaitingStrategy);

Sets the waiting strategy which object should use when it locks its own table.

Waiting strategies for objects can be:

wait

the table is tried to be locked and if other connection have already locked the table, the process waits for the release of the previous lock.

nowait (error)

the table is tried to be locked and if other connection have already locked the table, the process throws the GenLibException_DatabaseLock exception.

(virtual enum LockingStrategy CurrentLockingStrategy() const;

Returns the current value of _LockingStrategy attribute.

(virtual BOOL SetLockingStrategy(enum LockingStrategy _Locking_strategy);

Sets locking strategy which object should use when loaded itself from database or when the table is locked.

Locking strategies for objects can be:

none

objects do not explicitly locks table rows when they load themselves from database.

useful for retrieving of read-only objects.

shared

objects lock rows with their content in database explicitly after load in shared mode.

other processes can lock the same object in shared, but not in exclusive, mode too

exclusive

objects lock rows with their content in database explicitly after load in exclusive mode.

other processes can not lock the same object neither in shared nor in exclusive mode.

possible exceptions:

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError

covered external events:

Set locking strategy

The last group of methods is necessary to manage polymorph sets of objects inside query results.

(BOOL ObjectReference::RegisterClass() const;

This method regiters the prototype of the instance, referenced by the receiver. The registered prototype can be found by the name of the associated database table. If the instance, referenced by the receiver of that message is not derived from the OidBasedPersistentObject class, i tdoes nothing, because only prototypes of OidBasedPersistentObject descendants are registered.

(BOOL ObjectReference::ClearClassRegister() const;

This method clears all information about previously registered prototypes.

(virtual class ObjectReference &Virtualise();

If the receiver is the DatabasePointer referencing the OidBasedPersistentObject descendant, the pointer to the prototype, stored inside the DatabasePointer instance, is changed to point to the correct prototype. The correct prototype is found using the _FindPrototype method. The name of the table associated with the instance having a particular OID (value of an OID is held inside the DatabasePointer) is retrieved from the additional column CLASS_NAME of the OID_ROOT table. This method needs to execute one database select statement to do its work.

(char *VirtualSelectKeyClause() const;

Returns list of primary key columns including the column containing the name of the associated table name. It returns the SelectKeyClause() value only if the referenced class is not derived from the OidBasedPersistentObject class. Otherwise, it returns the same list with an aditional column OID_ROOT.CLASS_NAME.

(char *VirtualKeyColumnNames() const

It is an equivalent of the previous method for backward compatibility with the old naming conventions of methods.

(DatabaseObject class

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �9�. DatabaseObject class

The DatabaseObject is the common ancestor of all classes for objects retrieved from the database. The DatabaseObject can represent any projection onto some columns of join of any number of database tables. Instances retrieved from the database are not persistent. They can be changed after retrieving from the database, but changes will not be propagated back into database. Classes derived by the user from this class can be used to access data resulted from any SQL select statement.

Example: Let we have two tables CLERK and DEPT with following data

CLERK_NR�NAME�DEPT_NR��1�Smith, A.�2��2�Jones, B.�1��3�Pierce, M.�2��4�Smith, F.�3��Table � POŘ Table * ARABSKÉ �4� - CLERK database table

DEPT_NR�NAME��1�First Dept.��2�Second Dept.��3�Third Dept��Table � POŘ Table * ARABSKÉ �5� - DEPT database table

and we want to know the numbers of employees in each department. We can define new subclass of the DatabaseObject class, for example NumbersOfClerksInDepts with two attributes Dept_Nr a ClerkCount. This class will be assigned with the following Embedded SQL query:

SELECT DEPT.DEPT_NR, COUNT(CLERK.CLERK_ID)

INTO :SqlVar_Dept_Nr, :SqlVar_ClerkCount

FROM CLERK, DEPT

WHERE CLERK.DEPT_NR=DEPT.DEPT_NR

GROUP BY DEPT.DEPT_NR;

Protected attributes:

(BOOL _FreeWasDone;

There was already called Free() methods on this object.

Interesting implementation problem is associated with this attribute. It is connected with the destruction of the database object.

Protected methods:

(virtual BOOL _ExportAttributes() const;

Private method which copies attributes of an object into global variables known to the SQL communication part of GEN.LIB.

This method should be overwritten in new classes.

(virtual BOOL _ImportAttributes();

Private method which copies global variables into attributes of an object.

This method should be overwritten in new classes.

(virtual BOOL _ImportPointerAttributes(

	ObjectReference *DbPtr, DatabaseConnection *aConnection

) const;

Private method which fills-in the given database pointer from the global key variables. This method should be overwritten in new direct subclasses of the PersistentObject class.

(virtual BOOL _Load(

		const DatabasePointer &const aDatabasePointer

);

Private method which loads data from the given connection to the memory. Does nothing, redefined in PersistentObject, where calls _PostLoad before returns.

(virtual BOOL _PostLoad();

Private virtual method executed immediately after a database object is loaded from the database.

It may be overridden by programmer to provide an additional functionality.

(virtual BOOL _Update(DatabaseObject *target) const

Writes a target object from the memory to the disk. It is called by Update after calling _ExportAttributes.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_MemoryLock,

GenLibException_NotFound,

GenLibException_ConnectionError.

covered external events:

Stores object in database

(virtual class ObjectReference *_NewReference() const;

Creates new empty instance of the reference to the receiver. Database object refers (formally) to self. This method is called by the NewReference. The only difference is that NewReference tests, if _NewReference returns NULL. If yes, it throws an exception NoMemory.

(virtual BOOL _Delete(class ObjectReference *target) const;

Tries to destroy target object from the memory as well as from the database. Succeeds if all the tests for example, if the object is not locked) are passed successfully. _Delete deletes the record from the last table in the table chain (issue SQL command) belonging to the object and then calls inherited _Delete.

The difference between Delete and _Delete is that _Delete does not support cascaded deletion. Delete calls _Delete if the cascaded delete is not supported by the database.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_MemoryLock,

GenLibException_NotFound,

GenLibException_ConnectionError.

(virtual BOOL _Insert(DatabaseObject *target) const

Inserts the target object into the database according to its own knowledge about the tables, columns etc. The information about the associated database table (returned by the FromClause() method) is stored in the OID_ROOT.CLASS_NAME column for instances of the OidBasedPersistentObject descendants.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_ConnectionError

Methods:

(virtual class QueryResult *ExecuteQuery(

	class Query &Q, class DatabaseConnection *DbCon

) const;

Executes a given Query and returns pointer to a QueryResult object. This method was changed is not static now. Now we send the ExecuteQuery not to class but to the arbitrary object including prototype.

 possible exceptions:

GenLibException_NoMemory,

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError,

GenLibException_NotSupported

(char * GetSqlSelect (const Query &const Q) const;

Method which creates a SQL command from attributes of this object and from additional condition. Wanted result :

SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ... ORDER BY

(char * GetSqlSelect(

		const char *const _where_clause ,

		const char *const _order_by_clause,

		const char *const _select_clause,

		const char *const _into_clause ,

		const char *const _from_clause

) const;

Method which creates a SQL command from attributes of this object and from additional condition. Wanted result :

SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ... ORDER BY

(virtual class ObjectReference * NewReference() const

Creates new empty instance of the reference to the receiver. Controls memory space. The DatabaseObject creates another empty instance of its own class, meanwhile the PersistentObject creates an empty DatabasePointer instance.

possible exceptions:

GenLibException_NoMemory

(virtual class DatabasePointer &Address() const

Returns a DatabasePointer to self. DatabasePointer is able to point to object even if it is not really persistent or if it is an instance of the DatabaseObject class.

possible exceptions:

GenLibException_NoMemory

(virtual BOOL LockTable() const;

Method locks a table assigned to target object. The method works for PersistentObject and objects derived. Calls LockTable (LS,WS) with the default parameters.

(virtual BOOL LockTable(

 enum LockingStrategy aLockingStrategy,	enum WaitingStrategy aWaitingStrategy

) const;

Method locks a table assigned to target object by sending appropriate SQL command to the connection. The method works for PersistentObject and objects derived.

(PersistentObject class

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �10�. PersistentObject class

Unlike the instances of a DatabaseObject class which could be compute from data in the database using various operators, the instances of the PersistentObject class are objects stored in a relational database directly. Persistent objects represent rows in existing external relational database tables. Each row is identified by values of the primary key attributes. Persistent Objects can be locked in the memory to avoid their swapping out from memory and to assure their fixed memory addresses until unlock is called.

PersistentObject class can be assigned with only one database table. Its attributes can be mapped only to columns of this assigned database table, not to the results given as evaluation of expressions as e.g. attribute ClerkCount in previous example. For example we can define the subclass Dept of the class PersistentObject, assigned to the database table DEPT from the previous example. This subclass will have two columns int Dept_Id and char[n] Name. The SELECT statement for retrieving its instances from the database has the form:

SELECT DEPT.DEPT_ID, DEPT.NAME

INTO :SqlVar_Dept_Id, :SqlVar_Name

FROM DEPT;

Select statement can not contain GROUP BY and HAVING clauses, and also WHERE clause can not be used (_WherePrefix must return an empty string).

Derived from:

DatabaseObject

Protected attributes:

(enum LockingStrategy _LockingStrategy;

The identification of locking strategy of an object. The object can (when it loads data from database), lock table row either in none, shared or in exclusive mode.

(enum UpdateStrategy _UpdateStrategy;

The identification of strategy used, when a persistent object was updated. The changes can be either propagated immediately to the database or they can be written to the database when needed.

(enum WaitingStrategy _WaitingStrategy;

The identification of strategy used when a persistent object is locked. Either Error can occur or the object that tries to access the data from database will have to wait until the object is unlocked.

(BOOL _DirtyFlag;

Indicates, whether the object was or was not changed in the memory.

(unsigned int _MemoryLocks;

Number of memory locks on the object.

Methods:

This class has no new methods, all methods are inherited and rewritten to do the declared work.

(OidBasedPersistentObject class

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �11�. OidBasedPersistentObject class

OidBasedPersistentObjects are those designed by P+. They are represented in a relational database by a set of tables. To the root class of the hierarchy tree we assign a table with the columns associated with the attributes of this class. Each descendant class is represented by a table which columns correspond only to the added attributes. Attributes of a particular object deeper in class hierarchy then appear in several tables. From this follows that an object must be constructed using join of multiple tables associated with the path from the class of this object to the root of hierarchy tree. Other way is to construct an object by a sequence of select statements. Each of the statements selects only those attributes, which was added by one class. This approach corresponds well with the OO platform. To make it possible to join all pieces of one object, each table must contain the additional column OID. OIDs appear to be a good way how to identify objects within one database.

Existing instances:

const class OidBasedPersistentObject OidBasedPersistentObject_class

Prototype instance of the OidBasedPersistentObject class.

Derived from:

PersistentObject

Static attributes:

(static long _SQL_OID;					

Global variable for the _OID, which is filled by SQL commands.

(static long int _SQL_SerialNumber;

Global variable for the _SerialNumber, which is filled by SQL commands.

Attributes:

(long _OID;

This private attribute is added to an instance of the class when the instance is made persistent by calling BePersistent() method.

(long int _SerialNumber;

The number of version of object. It can help to keep consistent data in memory and thus amount of retrieved data can be decreased. When object must be accessed it is possible to check if serial number of object in database is the same as serial number of object in memory. If yes, then the data in the memory are valid and can be used. If not, content of the object in the memory must be refreshed.

Methods:

(virtual long int OID() const;

Returns OID of an instance, or zero, if the object is not really persistent (before calling BePersistent() method on it).

(DatabasePointer class

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �12�. DatabasePointer class

A pointer to the database points to one object loaded through a specific database connection and thus it includes database connection identification and object identification too. The same object can be loaded to the memory via two different connections, and can be changed independently in the context of each of the connection. Thus, they can be several different objects with the same OID in the memory. The database pointer points to exactly one object, independently on the fact if the related object is currently presented in the memory or if only its relational representation is available. In time of the access to the specified object through its database pointer, the pointer is automatically dereferenced, i.e. the object is retrieved (if necessary) from the database and placed into the memory. To minimise the amount of database accesses all persistent objects contained currently in the memory will be registered by GEN.LIB and future references to object will be faster.

Existing instances:

(const class DatabasePointer DBNULL;

Database pointer to nothing.

Attributes:

(class ObjectIdentification _ObjectIdentification;

The identification of the object, to which the pointer points.

Methods:

(DatabasePointer(

		DatabaseConnection *aConnection,

		const DatabaseObject *aPrototype,

		char *aSelectKeyValues

);

(DatabasePointer(

		DatabaseConnection *aConnection,

		ObjectIdentification *anIdentification

);

Constructors.	

(virtual BOOL Init(

		DatabaseConnection *aConnection,

		const DatabaseObject *aPrototype,

		char *aSelectKeyValues

);

Like constructor, but only fills already existing DatabasePointer with the given values.

(BOOL operator == (const class DatabasePointer &const DbPtr)const;

Tests, if the objects to which two database pointers point, are the same

(BOOL operator != (const class DatabasePointer &const DbPtr)const;

Tests, if the objects to which two database pointers point, are not the same

(ObjectIdentification class

ObjectIdentification is a class for identificating objects.

Existing instances:

(const ObjectIdentification IDNULL;

Empty object identification.

Attributes:

(const class DatabaseObject *_PrototypeOrObject;

This attribute provides the functions of the class of the identified object. It must together with _SelectKeyValues identify the object.

If the identified object is really persistent (i.e. its type is derived from PersistentObject and the method BePersistent was called), it contains the prototype of the object.

If the object is persistent, but its state is transient, it has no OID assigned (_SelectKeyValues is not defined) yet and object must be identified via itself. In this case this attribute contains the pointer to the identified instance.

If the object type is not derived from PersistentObject then this attribute contains the pointer to the identified instance.

(char *_SelectKeyValues;

The value of the key of the object.

Protected methods:

(virtual BOOL _Init(

 const class DatabaseObject *aPrototype, const char * const aSelectKeyValues

);

Initialises already existing identification.

Methods:

(ObjectIdentification(

			const class DatabaseObject *aPrototype,

			const char * const aSelectKeyValues

);

	Constructs a non-empty identification.

(ObjectIdentification(

		const ObjectIdentification & const X

);

	Constructs a copy of an identification X

(virtual operator ==(

			const ObjectIdentification & const X

) const;

Returns TRUE (implemented as integer), if the object identifications are the same, otherwise FALSE.

(virtual operator !=(

			const ObjectIdentification & const X

) const;

Returns FALSE (implemented as integer), if the object identifications are the same, otherwise TRUE.

(virtual ObjectIdentification &operator =(

			const ObjectIdentification & const X

);

Copy operator.

(Level 2 Module - Interface Module

(GenLibInterface class

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �13�. GenLibInterface class

GEN.LIB interface is one of the interfaces for a communication between the application and the database. (The other way how to manipulate persistent objects and data in database is to call public methods of classes defined in other modules). It provides methods for a work with persistent objects, e.g. for storing and loading objects into or from a database, querying objects or traversing between objects. It also provides the access to the existing relational databases. It can be divided into two interfaces, the inner and the external one, with the meaning written above (see the distinction between methods with the underscore and without the underscore). Methods without the underscore will be the part of the external interface which can be accessed without any restriction. The methods with the underscore will be a part of the internal interface which can be accessed only from the standard methods of GEN.LIB objects.

Existing instances :

(class GenLibInterface GenLib

Default GenlibInterface. It must be initialised at the begin of the application using the Init() method, and closed before the end of program using the Done() method.

Static attributes:

(static unsigned int _NoOfInterfaces;

The number of existing interfaces.

(static BOOL _Initialised;

TRUE, if any of the interfaces was initialised. The initialisation of the first interface calls the initialisation of the GenLib modules. The initialisation of subsequent interfaces only increments the _NoOfInterfaces attribute. Also closing interfaces only decrements the _NoOfInterfaces attribute, unless the interface is the last one. In this case, the closing methods of the Genlib modules are called.

Protected methods:

(BOOL _Sql(char *SqlCommand, class DatabaseConnection &DbConn);

SQL query to the database. Calls DatabaseConnection::_SQL.

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_ConnectionError

Methods:

(BOOL Init();

Initialisation part of GEN.LIB. Initialisation will prepare GEN.LIB to be able to do its job. This method is necessary to call before any other action with the database in the application is executed.

possible exceptions:

GenLibException_NoMemory

(class DatabaseObject *IsInMemory(class ObjectReference &Orf);

Access to the object with the test whether it is loaded into the memory. It takes the Database Pointer and returns the pointer to the object in the memory, if it is already loaded or NULL otherwise. It is used as the control before removing the object, updating or refreshing the object (or in all cases, when the object will be accessed).

Calls Orf.IsInMemory().

(BOOL RemoveObject(class ObjectReference &Orf);

Object removing, i.e. unregistration of the object and releasing its memory with the control, whether the object was in the memory or not (if not, it did not occupy any memory and no memory has to be released).

Calls Orf.RemoveObject().

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_MemoryLock

GenLibException_ConnectionError

(BOOL FreeObject(class ObjectReference &Orf);

Newer name of original RemoveObject. This method has the same functionality.

Calls Orf.Free().

possible exceptions:

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_MemoryLock,

GenLibException_ConnectionError

(BOOL DeleteObject(class ObjectReference &Orf);

Object removing, i.e. unregistration of the object and releasing its memory with the control whether the object was in the memory or not (if not, it did not occupy any memory and no memory has to be released). The object is deleted from the database too.

Calls Orf.Delete().

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_MemoryLock

GenLibException_ConnectionError

(BOOL UpdateObject(class ObjectReference &Orf);

Propagation of the object content (if the particular object is marked as dirty) to the database. This method sends this request to the appropriate database pointer.

Calls Orf.Update().

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_ConnectionError

(BOOL RefreshObject(class ObjectReference &Orf);

Re-read of the object from the database. It sends this request to the appropriate database pointer.

Calls Orf.Refresh().

possible exceptions:

GenLibException_NoMemory

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(DatabaseObject *MemoryLock(class ObjectReference &Orf);

Memory lock of the object (with semaphore, for example). It sends this request to the appropriate database pointer and returns the memory pointer to the locked object.

Calls Orf.MemoryLock().

possible exceptions:

GenLibException_NoMemory,

GenLibException_SqlError,

GenLibException_DatabaseLock,

GenLibException_NotFound,

GenLibException_ConnectionError.

(BOOL MemoryUnlock(class ObjectReference &Orf),

Memory unlock of the locked object.

Calls Orf.MemoryUnlock().

(unsigned int MemoryLocked(class ObjectReference &Orf),

Test, whether the object is locked in the memory. It returns the number of locks, or zero, if the object is not locked.

Calls Orf.MemoryLocked().

(BOOL RemoveAllMemoryLocks(ObjectReference &);

Removes all memory locks existing on the referenced object.

(BOOL RemoveAllMemoryLocks(DatabaseConnection &);

Removes all memory locks existing on the objects retrieved trough the given database connection.

(BOOL RemoveAllMemoryLocks(Database &);

Removes all memory locks existing on the objects retrieved from the given database.

(BOOL RemoveAllMemoryLocks();

Removes all memory locks existing on the all objects retrieved from any database.

(BOOL Sql(char *SqlCommand, class DatabaseConnection &DbConn);

SQL query to the database. It includes some above mentioned operations before the execution, i. e. all objects stored in memory from the same database are updated to assure a consistent state of the database.

Calls DbConn.Sql(SqlCommand).

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_ConnectionError

(BOOL Commit(DatabaseConnection &DbConn);

Finishing and accepting the transaction. It means the saving the objects from the memory to the database and the request to the database to commit.

Calls DbConn.Commit().

possible exceptions:

GenLibException_ConnectionError

(BOOL Rollback(DatabaseConnection &DbConn);

Transaction rollback to the state before the beginning of the transaction, removing all the memory objects from the database and the request to the database to rollback.

Calls DbConn.RollBack().

possible exceptions:

GenLibException_MemoryLock

GenLibException_ConnectionError

(BOOL Savepoint(DatabaseConnection &DbConn, char *Name);

Inserts a savepoint of given name into the current transaction.

Calls DbConn.SavePoint(Name).

possible exceptions:

GenLibException_MemoryLock

GenLibException_ConnectionError

GenLibException_NotSupported

(BOOL RollbackToSavepoint(DatabaseConnection &DbConn, char *Name);

Database rollback back to the savepoint of the given name.

Calls DbConn.RollbackToSavepoint(Name).

possible exceptions:

GenLibException_MemoryLock

GenLibException_ConnectionError

GenLibException_NotSupported

(class DatabaseConnection *Connect(

			class Database &DB,

			char *User,

			char *Password

);

Connect to the database. It returns pointer to the object DatabaseConnection.

Calls DB.Connect(User,Password).

possible exceptions:

GenLibException_NoMemory

GenLibException_ConnectionError

(BOOL Disconnect(DatabaseConnection &DbConnection);	

Database disconnect with COMMIT data.

Calls DbConnection.Disconnect().

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_MemoryLock

GenLibException_ConnectionError

(BOOL Abort(DatabaseConnection &DbConnection);

Database disconnect with ROLLBACK data.

Calls DbConnection.Abort().

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_MemoryLock

GenLibException_ConnectionError

(BOOL WriteBackImmediately();

Switch default setting, whether updated objects have to be written to the database immediately.

Calls SetUpdateStrategy(US_Immediately).

(BOOL WriteBackOnDemand();

Switch setting, whether updated objects have to be written to the database only on demand.

Calls SetUpdateStrategy(US_OnDemand).

(BOOL WaitWhenLock();

Sets the default waiting strategy to wait when the locked object is accessed.

Calls SetWaitingStrategy(WS_Wait).

(BOOL ErrorWhenLock();

Sets the default waiting strategy to raise an exception when the locked object is accessed.

Calls SetWaitingStrategy(WS_Error).

(BOOL SetLockingStrategy(enum LockingStrategy aLockingStrategy);

Sets default locking strategy that the object should use when it loads itself from the database.

Calls _ObjectBuffer_.SetLockingStrategy(aLockingStrategy) where _ObjectBuffer is the global instance of ObjectBuffer.

Locking strategies for objects can be:

none

objects do not lock the table rows when they load themselves from the database.

useful for retrieving of read-only objects.

shared

objects lock rows with their content in the database explicitly after load in shared mode.

other processes can lock the same object in shared, but not in exclusive, mode too.

exclusive

objects lock rows with their content in database explicitly after load in exclusive mode.

other processes can not lock the same object neither in shared nor in exclusive mode.

The following methods provide the functions similar to the methods of ObjectReference and ObjectBuffer. They call the associated methods of ObjectBuffer. For more information, see ObjectReference class and ObjectBuffer class.

(enum LockingStrategy CurrentLockingStrategy();

(enum UpdateStrategy CurrentUpdateStrategy();

(BOOL SetUpdateStrategy(enum UpdateStrategy anUpdateStrategy);

(enum WaitingStrategy CurrentWaitingStrategy();

(BOOL SetWaitingStrategy(enum WaitingStrategy aWaitingStrategy);

(BOOL Close();

Closes GEN.LIB interface. The Init method must be invoked before any GEN.LIB functionality can be used.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_MemoryLock

GenLibException_NotFound

GenLibException_ConnectionError

(BOOL GenLibInterface::RegisterClass(ObjectReference &Orf);

Registers the prototype of the referenced object (if it is derived from the OidBasedPersistent class) to allow searching of the prototype according to the name of the associated database table.

(BOOL GenLibInterface::ClearClassRegister();

Clears the informations about previously registered prototypes.

(ObjectReference &GenLibInterface::Virtualise(ObjectReference &Orf);

Sets the prototype inside the DatabasePointer to the OidBasedPersistentObject to point to the correct prototype of the pointed instance. The correction is based on the knowledge of the table name, associated with the instance.

(Level 2 Module - Query Module

(Relation class

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �14�. Relation class

We will use the following notions here:

class,

instance,

role method,

objects are linked,

restricted relation,

master object

index.

Relations represent relationships between objects (e.g. teacher teaches students). Because the notion of relation is used in relational databases where it has different meaning than relation between objects, we use the notion of OMT-relation for a relationships between objects.

According to the OMT methodology we consider only binary OMT-relations here. Ternary and more -ary relationships are not supported. This is not a big shortcoming, some commercial products are restricted in the same way too. In practice, most relationships are binary. An OMT-relation links together instances of two classes (first and second or left and right respectively). For example, teachers and students. These two classes have methods named accordingly to the role of the opposite class in the OMT-relation (class Teacher has method Students(), class Student has method Teachers()). Using these methods (role methods), the OMT-relation can be accessed from an instance of the class. But by calling a role method of the object A we obtain only a set of objects which are in OMT-relation with the object A. The object can obtain only the objects which are linked with it. For example, the teacher knows only these students which he teaches. We called this result restricted OMT-relation. Object A, which value determines the restriction, is called master object. But sometimes it is also advantageous to know globally which objects are linked. The restricted OMT-relation can be expanded to the whole OMT-relation by calling method Expand() of the OMT-relation. Each of the linked classes get also additional method with the same name as the name of the OMT-relation (so called relation method).

The member of the OMT-relation is the couple of the objects. We will call the first member of this couple as the left member and the other one as the right member. Accordingly we will use terms „left side“ and „right side“ of the relation to identify the first or the second class related together via a particular OMT-relation.

The OMT relations will be probably implemented as the relational tables in the database. Each row of such table will contain the identification of two objects. First of the identifications will identify object of the first class associated by the OMT-relation (the class on the left side of the OMT-relation) and the second will identify the second one.

OMT-relations should also maintain information about referential integrity (what happens, if, for example, the deleted object was in OMT-relation with other objects: not to allow the deletion, delete related objects too, or set them to the OMT-relation with some default object). The type of the maintenance of referential integrity is decided during the design of the database (in P+ or in ODL - Object Definition Language) and the latest versions of SQL implementation can maintain it automatically. So we left the problem of maintaining referential integrity to the database system. If the system supports constructs of SQL92 for maintaining referential integrity, the referential integrity will be maintained, in other case not.

The items of the OMT-relation can be inserted, deleted and accessed step-by-step. It differs from the Collection (see the specification report SSR01) by a special type of items. The items of OMT-relations are couples of DatabasePointer objects. The OMT-relation also differs from Query Result in the way that query results can not be modified. The changes to the OMT-relations are immediately written to the disk, they are not buffered.

Protected attributes:

(class DatabaseConnection *_database_connection;

Identification of the database where related instances are stored.

(const class DatabaseObject *_left_prototype;

Points to the prototype of the class on the left side of the relation.

(const class DatabaseObject *_right_prototype;

Points to the prototype of the class on the right side of the relation.

(char *_table_name;

The name of the table in the relational database with the OMT-relation

(char *_left_column_name;

The name of the left column of table _table_name.

(char *_right_column_name;

The name of the right column of table _table_name.

(class DatabasePointer _last_left;

The reference to the object, which was the last master object on the left side.

(class DatabasePointer _last_right;

The reference to the object, which was the last master object on the right side.

(char _restriction_side;

Information whether relation is restricted on the left or on the right side. Can be ‘X’ (none restriction). ‘L’(left) or ‘R’ (right).

(class DatabasePointer *_restricted_to;

A reference to the master object.

Protected methods:

(BOOL _SetSqlCommand(char * SQLcommand);

The method, which sets the text of SQL command to be executed in Query result.

Calls _database_connection->Sql(SQLcommand).

Methods:

(BOOL Insert(DatabasePointer N);

Valid only in restricted OMT-relations. It inserts a couple <M, N> or <N, M> (dependent on the side of the restriction) to the OMT-relation, where M is master object. It calls InsertCouple.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(BOOL Delete (DatabasePointer O);

Valid only in restricted OMT-relations. It deletes a pair <M, O> or <O, M> (dependent on the side of the restriction) from the OMT-relation, where M is master object. It calls DeleteCouple.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(DatabasePointer &Get();

Returns the reference to the object on the position given by the index.

(Relation(

		const class DatabaseObject *a_left_prototype,

		const class DatabaseObject *a_right_prototype,

		char *a_table_name,

		class DatabaseConnection *a_database_connection

);

Constructor. Two prototypes supply the types and needed virtual methods of the participating objects. Table name is the name of the relation. The names of the columns of the relational table are generated automatically. See description of the subclasses for details.

(Relation(

		const class DatabaseObject *a_left_prototype,

		const class DatabaseObject *a_right_prototype,

		char *a_table_name,

		class DatabaseConnection *a_database_connection,

		char *a_left_column_name,

		char *a_right_column_name

);

Constructor. In addition to the previous constructor, the names of the columns of the relational table (which will implement OMT-relation) can be specified.

(BOOL Restrict(

		class DatabasePointer &a_restricted_to,

		char a_restriction_side

);

Restricts the OMT-Relation to the given side. The master object will be the object specified by the database pointer.

(BOOL LRestrict(class DatabasePointer &a_restricted_to);

Restricts the OMT-relation to the left side with the master object R on the right side. The restricted OMT-relation will only consist of the objects linked with R.

(BOOL RRestrict(class DatabasePointer &a_restricted_to);

Restricts the OMT-relation to the right side with the master object L on the left side. The restricted OMT-relation will only consist of the objects linked with L.

(BOOL Expand();

Expands the restricted OMT-relation to the expanded (global) one. The expanded OMT-relation has two columns and consists of all the couples which are in the OMT-relation.

(virtual BOOL InsertCouple(DatabasePointer &left, DatabasePointer &right);

Inserts a couple <left, right> to the OMT-relation.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL DeleteCouple(DatabasePointer &left, DatabasePointer &right);

Deletes a couple <left, right> from the OMT-relation.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL LDeleteAll();

Deletes all couples <X, LastRight>.

(virtual BOOL LDeleteAll(class DatabasePointer &right);

Deletes all the objects from the left side of the OMT-relation which are connected with master object R on the right side.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL RDeleteAll();

Deletes all couples <LastLeft, X>

(virtual BOOL RDeleteAll(class DatabasePointer &left);

Deletes all the objects from the right side of the OMT-relation which are connected with master object L on the left side.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL DeleteAll();

Valid only in restricted OMT-relations. It deletes all the pairs <M, O> or <O, M> (dependent on the side of the restriction) from the OMT-relation, where M is master object. It calls DeleteCouple.

(BOOL Delete(DatabasePointer &dbp);

Valid only in restricted OMT-relations. It deletes a pair <M, dbp> or <dbp, M> (dependent on the side of the restriction) from the OMT-relation, where M is master object. It calls DeleteCouple.

(virtual BOOL LInsert(DatabasePointer &left);

Inserts couple <L, _LastRight> into OMT-relation. _LastRight is a DatabasePointer to the last processed right object.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL RInsert(DatabasePointer &right);

Inserts couple <_LastLeft, O> into OMT-relation. _LastLeft is a Database Pointers to the last processed left object.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(BOOL Insert(DatabasePointer &dbp);

Applicable only on restricted relations. Inserts a new object to the set of related objects.

(QueryResult *ExecuteQuery(Query &Q);

Applicable only on restricted relations. Executes a given Query and returns pointer to a QueryResult object. As a result, the set of the related objects, which satisfies the condition is returned.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *LGetAll(

		const class DatabasePointer &const right,

		const class Query &const query

);

Gets all the objects connected to object "right" according to "query".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *LGetAll(

		const class DatabasePointer &const right

);

Gets all objects connected to object "right".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *LGetAll(

		const class Query &const query

);

Gets all objects connected to object "LastRight" according to "query".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *LGetAll();

Gets all objects connected to object "LastRight".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *RGetAll(

		const class DatabasePointer &const left,

		const class Query &const query

);

Gets all objects connected to object "left" according to "query".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *RGetAll(

		const class DatabasePointer &const left

);

Gets all objects connected to object "left".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *RGetAll(

		const class Query &const query

);

Gets all objects connected to object "LastLeft" according to "query".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *RGetAll();

Gets all objects connected to object "LastLeft"

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *GetAll(

		const class Query &const query

);

Valid only in restricted OMT-relations. It gets all object connected to master object "M" (dependent on the side of the restriction). It calls RGetAll or LGetAll.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual QueryResult *GetAll();

Valid only in restricted OMT-relations. It gets all object connected to master object "M" (dependent on the side of the restriction). It calls RGetAll or LGetAll.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL LExists(

		const class DatabasePointer &const right,

		const class Query &const query

);

Tests if exists any object connected to object "right" according to "query".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL LExists(

		const class DatabasePointer &const right

);

Tests if exists any object connected to object "right".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL LExists(

		const class Query &const query

);

Tests if exists any object connected to object "LastRight" according to "query".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL LExists();

Tests if exists any object connected to object "LastRight".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL RExists(

		const class DatabasePointer &const left,

		const class Query &const query

);

Tests if exists any object connected to object "left" according to "query".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL RExists(

		const class DatabasePointer &const left

);

Tests if exists any object connected to object "left".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL RExists(

		const class Query &const query

);

Tests if exists any object connected to object "LastLeft" according to "query".

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL RExists();

Tests if exists any object connected to object "LastLeft"

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL Exists(

		const class Query &const query

);

Valid only in restricted OMT-relations. It tests if exists any object connected to master object "M" (dependent on the side of the restriction). It calls RExists or LExists.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

(virtual BOOL Exists();

Valid only in restricted OMT-relations. It tests if exists any object connected to master object "M" (dependent on the side of the restriction). It calls RExists or LExists.

possible exceptions:

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_NotFound

GenLibException_ConnectionError

	(virtual BOOL ExistsCouple(

		const class DatabasePointer &const left,

		const class DatabasePointer &const right

);

Returns TRUE, if the couple <left, right> is related via given OMT�relation.

(OneToOneRelation class

Derived from:

Relation

Methods:

The class has the same methods as the Relation class, redefined to support one to one relationships. It stores the data about relation in both („left“ and „right“) tables. If column names are automatically derived, it concatenates the names of the key columns of the opposite table with the prefix ‘„Table name“_’.

(OneToManyRelation class

Derived from:

Relation

Methods:

The class has the same methods as the Relation class, redefined to support one to many relationships. It stores the data about relation in the „right“ table. If column names are automatically derived, it concatenates the names of the key columns of the „left“ table with the prefix ‘„Table name“_’.

(ManyToManyRelation class

Derived from:

Relation

Methods:

The class has the same methods as the Relation class, redefined to support many to many relationships. It stores the data about relation in the separate table, which name is specified in the constructor. If column names are automatically derived, the names of key columns of the left participating class are concatenated with the prefix ‘L_’ and the second names are concatenated with the prefix ‘R_’..

(Query class

Query to a database is applied to the DatabaseObject class or its descendants. It returns an instance of the QueryResult class. This QueryResult has not any relationship to the Query object. QueryResult keeps all necessary information to access all retrieved objects. We can execute queries operating only on one class (each instance of a subclass is, however, the instance of each of its own superclasses). In the time the query is executed, no instance of the target class must be available. If we want to construct a query as the join of different tables, we must design appropriate DatabaseObject subclass to retrieve required information. This query has more limited accessories for querying, e.g. with respect to SQL. The Query Result is a collection of objects, respective a collection of DatabasePointers. The items of the result must be consistent with the queryfied object type. Query can be sent to arbitrary instance including prototype, the functionality will be the same.

Existing instances :

(const class Query ALL;

A Query, which returns all instances of the target class. It contains no additional condition.

Attributes:

(char *_where;

Where clause of the query. The where clause of the SQL statement is obtained by the concatenation with where clause of the class to which the query is sent.

(char *_order_by;

Order by clause of the query.

Protected methods:

(virtual char *_Select() const;

Returns NULL and does nothing. May be redefined to replace columns selected.

(virtual char *_Into() const;

Returns NULL and does nothing. May be redefined to replace variables which store the result.

(virtual char *_From() const;

Returns NULL and does nothing. May be redefined to add new item to the list of tables.

Methods :

(Query (const char *const a_where);

Constructor for an unsorted query. The other parts of the query (select, from and key condition) are stored in the object to which the query is sent.

(Query (const char *const a_where,

		const char *const a_order_by

);

Constructor for sorted query.

(Query (const Query &const X);

Copy constructor for Query instance. It sets the WHERE clause.

(char *Where() const;

Returns Where clause hold by the query.

(BOOL Where(const char * const a_where);

Sets Where clause of the query. Where clause of the query is concatenated (through ‘and’ condition) with the where clause of the object to which the query is sent.

(Query &Not();

(Query operator !() const;

Provide query negation. Query negation in this context means the query complement.

possible exceptions:

GenLibException_NoMemory

(Query &Or(const Query & const Q),

(Query operator ||(const Query & const Q) const;

Provide disjunction of two queries. It corresponds to the conjunction of their conditions with OR.

possible exceptions:

GenLibException_NoMemory

(Query &And(const Query & const Q),

(Query operator &&(const Query & const Q) const;

Provide conjunction of two queries. It corresponds to the conjunction of their conditions with AND.

possible exceptions:

GenLibException_NoMemory

(char *OrderBy() const;

Returns the ORDER BY clause hold by the Query.

(BOOL OrderBy(const char * const a_order_by);

Sets the ORDER BY clause hold by the Query.

possible exceptions:

GenLibException_NoMemory

(Query & operator =(const Query &X);

Copies a Query into another Query.

(ComplexQuery class

This subclass of the Query class is used internally by the GEN.LIB to obtain all associated objects via OMT-relation.

Derived from:

Query

Attributes:

(char *_select;

The alternative SELECT clause of the query. If its value is not NULL, the query selects those columns instead of original set of columns defined in the DatabaseObject class itself.

(char *_into;

The alternative INTO clause of the query. If its value is not NULL, the query selects columns to those variables instead of original set defined in the DatabaseObject class itself.

(char *_from;

The additional table names. If its value is not NULL, the query selects from more tables, than it is defined in the DatabaseObject class itself.

Protected methods:

(virtual char *_Select() const;

Returns the value of the _select attribute. Redefines the inherited method to replace columns selected.

(virtual char *_Into() const;

Returns the value of the _into attribute. Redefines the inherited method to replace the names of the variables which store the result.

(virtual char *_From() const;

Returns the value of the _from attribute. Redefines the inherited method to add new item to the list of tables.

(QueryResult class

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �15�. QueryResult class

An instance of the QueryResult class is produced by evaluating a query on the database. The query result consists of the collection of the items which identify unique resulting object (i.e. the instances of the DatabaseObject directly, or the object identifications in case of PersistentObject result) which satisfy the criteria given in the query. QueryResult stores the command which invoked it. When QueryResult is returned, it must be opened before it can be traversed. In contrast to its ancestor, OrderedCollection, QueryResult can not be modified. No additional objects can be inserted into it. The QueryResult must be closed after finishing the work with it.

Query results will be probably implemented by database cursors. The work with them is similar to the work with cursors in a RDBMS.

Attributes:

(class Query *_query;

The original Query for this result.

(class Cursor *_cursor;

The cursor for data retrieving.

(const class DatabaseObject *_prototype;

The prototype of the result database/persistent class. The prototype provides virtuality, for example it holds the sql statement which constructs the all instances of the class to which the command is sent.

(class ObjectReference *_reference;

The prototype of the reference to result class.

(char *_sql_select;

The select statement of the associated query.

(class DatabaseConnection *_database_connection;

The database connection used for retrieving data.

Protected methods:

(BOOL _SetSqlCommand(char* SQLcommand);

Sets the text of SQL command to be executed in Query result. Copies SQLcommand to _sql_select.

Methods:

(long Count();

Returns the number of the items in the collection.

(BOOL Prev();

Sets the index to the previous object in the collection. It returns TRUE if the setting was successful, otherwise it returns FALSE.

(BOOL Next();

Sets the index to the next object in the collection. It returns TRUE, if the setting was successful, otherwise it returns FALSE.

(BOOL First();

Sets the index to the first object in the collection. It returns TRUE, if the setting was successful, otherwise it returns FALSE.

(BOOL Last();

Sets the index to the last object in the collection. It returns TRUE, if the setting was successful, otherwise it returns FALSE.

(BOOL IsOnFirst();

Returns TRUE, if the index points to the first item of the collection, otherwise it returns FALSE.

(BOOL IsOnLast();

Returns TRUE, if the index points to the last item of the collection, otherwise it returns FALSE.

(virtual class ObjectReference *Get();

Returns the reference to the resulted object on the position given by the index (by the position of the database cursor in the result).

Returns a pointer instead of the reference (as was written in the previous version of the document).

(virtual class ObjectReference *GetNext();

Sets the index to the next object in the collection. if succeeds, returns the reference to the resulted object on the position given by the index (by the position of the database cursor in the result).

(BOOL GoToPosition (long Pos);

Sets the index to the given position. Next calling of Get returns the Pos-th item of the collection.

(long Position();

Returns the current value of the index.

(QueryResult(Query *a_query,

		const DatabaseObject 	*a_prototype,

		DatabaseConnection 	*a_database_connection);

(QueryResult(Query *a_query,

		const DatabaseObject *a_prototype,

		char *a_sql_select,

		DatabaseConnection 	*a_database_connection);

Constructors.

(BOOL Open();

Stored command is executed.

possible exceptions:

GenLibException_NoMemory

GenLibException_SqlError

GenLibException_DatabaseLock

GenLibException_MemoryLock

GenLibException_NotFound

GenLibException_ConnectionError

(BOOL Close();

Closes retrieved set of objects. By closing the QueryResult, the cursor attached to it is closed. After closing, QueryResult can be reopened by sending Open message. When QueryResult is closed, no operation except Open can be invoked on it.

(Level 2 Module - Buffer Module

(ObjectBuffer class

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �16� - ObjectBuffer class

Instance of this class represents a buffer of persistent objects. All of the persistent objects which are currently present in memory are registered in this buffer. The buffer contains set of BufferItems. Each of them holds DatabasePointer to one of the registered objects, and memory pointer to its memory copy. Whenever an object is accessed via its database pointer, the object buffer translates this database pointer to memory pointer. If object is not in memory yet, the buffer loads it and registers its memory address for future accesses.

This caching mechanism should provide efficient access to the persistent objects.

All objects, which are read in the program to the memory, are pointed through this buffer. If the memory is full, some of the objects are written out to the database and theirs memory is freed.

Attributes:

(BOOL Initialised;

TRUE, if the buffer was initialised. Buffer is initialised during. This attribute is set to FALSE in the constructor before calling Init. If Init is successful, it sets this attribute to TRUE.

(BufferItem * _LastAccessedItem;

Holds the last accessed buffer item. Using this attribute can by-pass searching in the buffer.

(struct BufferItem *_Structure[MAX_CONNECTION][HASH_TABLE_SIZE];

Structure, which holds buffer items. The objects in buffer are separated according to the connection. Several different copies of one object can appear together in the memory. Each of the copy is load through different connection. Each of the connections has its own hash table, in which the objects (buffer items) are stored. The collisions are solved by chaining buffer items.

(unsigned long _ObjectsInBuffer;

The number of the objects stored in the buffer. If this number reaches the constant MAX_OBJECTS_IN_BUFFER, the garbage collector is called to free space.

(enum LockingStrategy _LockingStrategy;

Object can lock the tables from which it is loaded into the memory.

(enum UpdateStrategy _UpdateStrategy;

The changes to the object can propagate to the database immediately or on demand.

(enum WaitingStrategy _WaitingStrategy;

How to wait, if the demanded object is locked.

Protected methods:

(unsigned long _GarbageCollector();

Frees the memory. The strategy for the clearing memory is simple yet. All the objects, which are not locked, are freed from the buffer. Returns the number of the objects removed from the buffer

(unsigned int _Hash(const char *values) const;

Takes the key of the object as the argument. Returns the index in the hash table. (This index is not sufficient for searching object in the memory, because several copies according to the different connections can exist in the memory. Thus, the second argument needed for the finding object in the memory is the global connection handle.

(BufferItem *_FindItem(const class DatabasePointer &const DbPtr);

Similar to IsInMemory, instead DatabasePointer returns buffer item.

(BOOL _RemoveConnection (int ConHandle);

Similar to _RemoveAll(Connection), instead of pointer to database connection takes handle as a parameter

 (BOOL RemoveConnection (int ConHandle);

Similar to RemoveAll(Connection), instead of pointer to database connection takes handle as a parameter. In contrast to _RemoveConnection does additional test for the locks.

(BOOL UpdateConnection (int ConHandle);

Similar to UpdateAll(Connection), instead of pointer to database connection takes handle as a parameter.

(BOOL _RemoveAll();

Removes all the objects from the memory. No tests for the locks are performed.

(BOOL _RemoveAll(const class DatabaseConnection *const DbC);

Removes all the objects from the connection. No tests for the locks are performed.

(BOOL _RemoveAll(const class Database *const DB);

Removes all the objects from the database. No tests for the locks are performed.

Methods :

(BOOL Init(

	 const enum LockingStrategy Locking_Strategy,

	 const enum UpdateStrategy Update_Strategy,

	 const enum WaitingStrategy Waiting_Strategy

);

Initialisation of the buffer. This method build all necessary data structures which allow to the buffer to work properly. This method is called by the GenLibInterface.Init method.

(class PersistentObject *IsInMemory(

	 const class DatabasePointer &const DbPtr

);

Access to the object with the test whether the object is loaded into the memory. It takes the Database Pointer and returns the pointer to the object in the memory (if he is loaded in the memory) or NULL otherwise. It is used for the control of removing object, updating or refreshing of the object (or in all cases, when the object will be accessed).

(BOOL RegisterObject(

	 const class DatabasePointer &const DbPtr,

	 const class PersistentObject *const MemPtr

);

Registration of the new created object in the ObjectBuffer. All instances of PersistentObject and their descendants present in memory must be registered. Registration is called from PersistentObject immediately it becomes really persistent by the calling of the BePersistent method, or whenever the buffer loads an object from the database.

(BOOL RemoveObject(class DatabaseObject *MemPtr,

						 const class DatabaseConnection * const DbCon))

(BOOL RemoveObject(const class DatabasePointer &const DbPtr);

Object unregistration. This method is invoked whenever the PersistentObject is deallocated from the memory by Delete or Free methods.

(BOOL UpdateAll(const class Database *const DB);

Updates all dirty objects in the buffer loaded from the specified database. (Each object remembers pointer to its own database). It is necessary to do it before most of SQL commands can be performed on that database. The reason for that behaviour is to do contents of database up-to-date before SELECT/UPDATE SQL command is executed.

(BOOL UpdateAll(const class DatabaseConnection *const DbC);

(BOOL UpdateAll();

Updates all dirty objects in the buffer independently on the database the objects are from. Dirty objects are stored back in database from which they were loaded before closing GEN.LIB.

(BOOL RemoveAll(Database *DbPtr);

Removing all the objects belonging to the specified database from the buffer. Before removal the dirty objects are stored back into database. Objects are deallocated from memory.

(BOOL RemoveAll();

Removing all the objects from buffer. Objects are deallocated from the memory.

(BOOL RemoveAll(const class DatabaseConnection *const DbC);

(BOOL RemoveAll(const class Database *const DB);

Removing all the objects belonging to the specified database from the buffer. In opposite to RemoveAll method without underscore, this method doesn’t store the dirty objects back to the database. Objects are deallocated from the memory.

(BOOL _RemoveAll();

Removing all the objects from the buffer. Dirty objects aren’t stored back to the database before objects are deallocated from memory.

(DatabaseObject *GetReferencedObject(

		const class DatabasePointer &const DbPtr

);

(DatabaseObject *GetReferencedObject(

		const class DatabasePointer &const DbPtr,

		const enum LockingStrategy _Locking_strategy

) ;

Returns the memory pointer to the referenced object.

(BOOL WriteBackImmediately();

Switch default setting whether updated objects have to be written to the database immediately after changing.

(BOOL WriteBackOnDemand();

Switch default setting whether updated objects have to be written to the database only on demand.

(BOOL WaitWhenLock();

Sets the default waiting strategy to wait when the locked object is accessed.

(BOOL ErrorWhenLock();

Sets the default waiting strategy to raise an exception when the locked object is accessed.

(enum LockingStrategy CurrentLockingStrategy() const;

(BOOL SetLockingStrategy(enum LockingStrategy aLockingStrategy);

Sets default locking strategy which object should use when loading itself from the database. Locking strategies for objects can be:

none

objects do not lock the table rows when they load themselves from the database.

useful for retrieving of read-only objects.

shared

objects lock rows with their content in the database explicitly after load in shared mode.

other processes can lock the same object in shared, but not in exclusive, mode too.

exclusive

objects lock rows with their content in database explicitly after load in exclusive mode.

other processes can not lock the same object neither in shared nor in exclusive mode.

(enum UpdateStrategy CurrentUpdateStrategy() const;

Returns the current update strategy

(BOOL SetUpdateStrategy(enum UpdateStrategy anUpdateStrategy);

(enum WaitingStrategy CurrentWaitingStrategy() const;

Returns the current update strategy

(BOOL SetWaitingStrategy(enum WaitingStrategy aWaitingStrategy);

Sets the waiting strategy.

(BOOL RemoveAllMemoryLocks();

Removes all memory locks on all objects.

(BOOL RemoveAllMemoryLocks(class Database &DB);

Removes all memory locks on objects from the given database.

(BOOL RemoveAllMemoryLocks(class DatabaseConnection &DbConn);

Removes all memory locks from all objects retrieved from the given database connection.

(BufferItem class

� VLOŽIT Word.Picture.6 ���

Figure � POŘ Figure * ARABSKÉ �17� - BufferItem class

The BufferItem holds a couple of the database pointer to some persistent object and an address of occurrence of the same object in the memory. Set of such items is hold by the DatabaseBuffer.

Attributes:

(BufferItem * _Next;

The pointer to the next item in the chain hashed to the same position. See ObjectBuffer::_Structure.

Protected attributes:

(const class DatabasePointer *_DatabasePointer;

The object buffer provides the mechanism, which says, if the object given by the database pointer is in the memory, or not. This attribute serves as a key during finding the object in the memory.

(const class PersistentObject *_MemoryPointer;

Though the buffer item and corresponding object are often substituted in this text, it is a slight difference between them. Buffer item contains the pointer to the referenced object.

Methods :

(BOOL Set (const DatabasePointer &DbPtr, const DatabaseObject *MemPtr);

Sets it own contents to the given values.

(class DatabasePointer &GetDatabasePointer() const;

Returns value of the _DatabasePointer attribute.

(class PersistentObject *GetMemoryPointer() const;

Returns value of the _MemoryPointer attribute.

��	Contract Number : CP94-764�	Document Reference :SDR01\CU\PRO71030\ PRO71030.DOC\C��

System Design Report	 � DATUM \l �31.10.1997�	Page � STRÁNKA �14�

