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Abstract 
The methods of the persistent data storage and manipulation have rapidly changed during last 

years. Among older relational databases appeared implementations of object-oriented databases like 
O2. For accessing data in object database management systems, there exists well-defined ODMG 
interface, since January 2000 in version ODMG-3. Before ODMG, the lack of a standard for object 
databases was one of major limitations to their more widespread use. In spite of all theoretical 
advancements OO databases don’t fulfil all expectations yet. Currently the evolution in data 
processing appears more likely and more acceptable by users than making revolution steps. 
Progressive features of object-oriented databases become available in recent versions of relational 
database management systems of major vendors as Oracle, Informix etc.  

The wide acceptance of the SQL-92 Entry Level standard in the world of relational databases 
allows a high degree of portability and interoperability between relational systems. Successor of 
SQL-92, standard SQL-1999 accepted in December 1999 as part of SQL-3 standard proposal consists 
of ten parts define language elements for defining and using procedural objects and user defined types, 
methods for data binding and call level interfaces. However, ten years after, not all features defined 
even in the SQL-92 Full level are implemented in available databases. According to Jim Melton, 
member of technical stuff in Oracle Server Technologies, it will take two to three generations of 
database servers to conform SQL-1999. Considering delay in acceptance of SQL-92 it will take even 
more time. 

This thesis is concerned on the aspects of persistent data storage of C++ objects in the relational 
databases. It introduces design of transparent interface and implementation of the library optimised for 
currently available SQL-92 Entry Level compliant databases, thus using classical database relations as 
the storage medium. Proposed query language – object algebra – combines operations of relational 
algebra with used object model. Although the main goal of the thesis storing of and manipulation with 
C++ objects with respect to the portability, designed object library allows uniform access also to 
legacy relational data through C++ objects. 
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1 Introduction 

The world of databases went through the big development during last few years. Aside 
relational database management systems (RDBMS) appeared also object-oriented database 
management systems (OODBMS).  

Object databases are usually referring to those data management products that are specifically 
designed for use with an object programming language and are very closely coupled with one or more 
object programming languages.  Usually, the most of the recent OODBMSs use C++ and/or Smalltalk 
languages as their database programming language. The application programmer may access database 
objects directly using the database operations in the programming language, or may perform 
associative lookups of objects using the query language. Unfortunately, the latter includes many 
problems concerning both the designs of such languages and their implementations. Two significant 
development lines are recently at disposal: ODMG-93 standard with its query language OQL [Ca93] 
and the work proposed by the ANSI X3H2 group well-known as SQL3 [Me94]. Both ANSI X3H2 and 
ISO DBL committees accepted part of this proposal in 1999. Both ODMG and SQL-99 standards are 
briefly described in section 2. 

A few years ago, the OODBMS seemed to win the competition with standard relational 
databases. There seemed to be two advantages of the OODBMS systems. 

• OODBMSs could better handle complex data structures and storage binary content like images, 
video, and audio data. 

• Object-oriented databases have the ability to model static properties such as objects, attributes and 
relationships, integrity rules over objects and operations, and dynamic properties of objects 
directly. 

Application development community absorbed OO tools, both the object-oriented programming 
languages and specialised client-server tools, including OO CASE tools and associated OO 
methodologies for software design and specification. 

In comparison with expectances, today's reality is much different. Relational technology is still 
dominant and thus mixing the worlds of relations and objects has appeared. The idea to implant the 
objects to relational database is not new. For example in [Pr91] authors describe a technique for 
constructing an OODBMS from existing relational technology. They denote their resulted architecture 
as the object-oriented relational database. During 90ties many different approaches to the problem and 
associated products have appeared. Paul Harmon in [Ha95] distinguishes among object/relational data 
managers, relational wrapper libraries and object/relational databases. 

Object/relational data managers map objects directly to relational tables and manage objects. 
Products such as HP Odapter, Persistence, Ontos OIS, UniSQL belongs to them. For example, Odapter 
can scan SQL table definitions of existing databases and figure out the corresponding C++ to make 
object definitions. Today, it is available as an object management level on top of Oracle. 

Relational wrapper libraries map objects to database objects, which are linked to relational 
database. The relational wrapper detects a change in the contents of an object and automatically 
generates the SQL to make the changes in the linked relational database. Similarly, it detects changes 
to relational database and moves that information back into the local objects. Obviously, the 
translations are transparent to the user. Good examples of this approach are Smalltalk tools, e.g. 
VisualWorks and VisualAge. 

Object/relational databases store information using both objects and relations. They also let 
developers to access the data using either method. Today most important examples of this approach 
include products of traditional relational database vendors such as Oracle since version 8 [Or96], 
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Informix, and IBM [Ch96]. In spite of similarity between them the backward compatibility with older 
products and complexity of the SQL standard causes differences in approaches to their design. 

As Dr. Mary Loomis, the architect of the Versant OODBMS, mentioned in her interview in 
DBMS Journal [Ka94], the typical C++ programmer is not familiar with the SQL language, and is not 
familiar with relational systems. He or she would like to abstract from using the database and consider 
the database as a very large extended virtual memory of objects. The manipulation with objects should 
be the same independently on the fact whether the objects are in main memory, on disk, or stored in 
the database remotely across the network. Programmers do not want to have to think whether an object 
is in the cache or it is necessary to get it from disk. Similarly, they do not want to learn new languages 
as OQL or SQL, for example. 

This thesis concerns on solution of interoperability between the program written in OO programming 
language, especially in C++ and ordinary relational database. Second chapter of this thesis briefly 
describes relevant database standards together with examples of competitive approaches to program 
object persistence. Next two chapters form the main part of the document. First of them, chapter 3, 
describes the formal object model and the object algebra – proposed query language for retrieving 
object sets upon this object model. Fourth chapter thoroughly describes C++ interface of described of 
theoretical framework and practical aspects of its implementation. Included C++ library not only 
allows programmer to manipulate uniformly with both persistent objects and older relational tables, 
but also enhances C++ language by simple manipulation with directly or indirectly associated objects. 
First generation of the proposed interface was successfully used in the GEN.LIB1, part of ADOORE2 
project. Its primary purpose was to implant the Rumbaugh's OMT methodology [Ru91] of OO 
analysis and design into the environment of building business applications. Aspects of the library 
described in [Ko96a] and [Ko96b] were published among others in [Ko97]. The experience from this 
project leads to significant enhancements of both the object model and query language. 

                                                      
1 GENeral LIBrary 
2 Application specific Depository of Object ORiented Environment 
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2 Related Works 

The idea of persistent storage of objects manipulated in the application is not new. Concerning 
the persistency achieved using database management system exist three main trends that differs in the 
complexity of data that can be maintained directly by the database server. Together with different 
approach to data representation those three kinds of databases use different standards for the data 
access and manipulation. Most advanced object databases are accessible through ODMG interface. In 
contrast the older relational databases use SQL dialects based on the SQL-92 standard. The newest 
class of databases we should take into account discussing the object persistency is so called 
object-relational databases. They stand in middle between relational databases from which they evolve 
and object databases. As in case of pure object and pure relational databases there exist SQL-1999 
standard for communication with them. The existence of widely accepted standard for communication 
is important for portability. As we show below, not all standards on the paper are also standards 
currently accepted and supported by relevant database vendors on the market. 

2.1 ODMG 

The object database standard ODMG represents industry standard that for object databases 
provides or should provide the same work as the SQL does in world of relational databases. It 
promises cross-platform portability of applications written above object-relational database. ODMG 
draws from SQL, OMG and IDL standards. Upon them it builds object definition language ODL and 
object query language OQL.  

2.1.1 ODMG Object Definition Language 

The ODL proposed by ODMG standard is analogous to DDL – data definition language – for 
relational databases.  It is extension of OMG language for interface definition. It abstracts from 
implementation details of OODBMS and so the source code can be ported to any compatible database.  

New type in ODL is declared by definition of its interface. The simplified syntax of interface 
declaration is 
<type_definition> ::= interface <type_name> [ : <parent_type_list> ] 

{ 
[ <type_property_list> ] 
[ <property_list> ] 
[ <operation_list> ] 
} 

where 
<type_name> ::= <string> 
<parent_type_list> ::= <type_name> 

| <type_name> , <parent_type_list> 
<type_property_list> ::= <type_property> 

| <type_property> , <type_property_list> 
<type_property> ::= extent <string> 

| key <property_name> 
| keys <property_list> 

<property_list> ::= <property_name> 
| <property_name> , <property_list> 

<property_name> ::= <attribute_name> 
| <traversal_path> 
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<attribute_name> ::= [ attribute ] <string> 
<traversal_path> ::= <string> 

Complete grammar of ODL can be found in [Ca93] or in its last version in [Ca00]. 

The extent clause defines name of the extent – the set of all instances of given type. Each 
instance of class Person will be an element of the extent of class Person. If for example class 
Employee is subclass of class Person, then the extent of Employee is subset of extent of Person. 

In case the instances of the class are uniquely identifiable by values they contain in some 
attribute or set of attributes, those identifying attributes can be declared as keys. 

For example the class Person with its subclass Employee can be defined as follows. 
interface Person 
{ 
 extent People; 
 keys FirstName, LastName; 
 attribute string[30] FirstName, 
 attribute string[30] LastName, 
 unsigned short age() 
}; 
 
interface Employee : Person 
{ 
 extent Employees; 
 key Id; 
 attribute int Id, 
 attribute float Salary 
}; 

ODMG standard supports binary relationships of classes with 1:1, 1:N and M:N cardinality. 
Instead of self-standing relationship definitions the ODMG standard declares so called traversal paths 
inside related classes. 
interface Employee 
{ 
 ... 
 relationship Employee Supervisor inverse Employee::Supervises; 
 relationship Set<Employee> Supervises inverse Employee::Supervisor; 
 ... 
}; 

Return types of two inverse traversal paths express the cardinality of the relationship. This 
example shows definition of one supervisor-supervises relationship with 1:n cardinality. 

2.1.2 ODMG Object Query Language 

The OQL is a declarative language similar to SQL–92. Its extensions concern complex objects, 
polymorphism and traversal paths. Co-operation of ODMG and ANSI X3H2 groups ensures 
interoperability of OQL also with newer SQL-99 standard. The query statement 
SELECT * 
FROM Emploees AS e 
WHERE e.Salary > 500 
returns all employees with salary greater than $500. 

2.2 SQL-99 

The multi-part standard ISO/IEC 9075-n:1999, known as SQL-99, represents third generation of 
the SQL standard. This standard reflects join efforts between database vendors as IBM, Informix 
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(currently belonging to IBM), Microsoft, Oracle, Sybase, and others. It tries to unify the methods of 
defining, accessing and manipulating data in object/relational databases. Its goal is to enable 
portability of database applications across different servers. It represents significant enhancement over 
SQL-92, previous ANSI/ISO database language standard. SQL-99 extends SQL-92 in many ways. 
From our point of view the most interesting is the addition of an extensible, object-oriented type 
system defined in SQL/Foundation, part 2 of the standard. Apart from the ability to create flat tables, 
SQL-92 offers no facilities to define complex data types. In contrast, SQL-99 offers a fairly rich type 
system based on the notion of abstract data types (ADTs). ADT definitions correspond to a set of 
attribute and routine (procedure/function) definitions, as it is shown on following example. 
CREATE TYPE Person_T 
( 
    first_name CHAR(30), 
    last_name CHAR(30), 
    birth_date DATE, 
    FUNCTION age RETURNS INTEGER 
    <the source code of the function age> 
); 
CREATE TYPE Employee_T UNDER Person_T 
( 
    id NUMBER(10), 
    salary NUMBER(7,2) 
); 

An ADT is completely encapsulated. Only its behaviour is visible outside the type definition, 
but not the implementation of its attributes and routines. ADT routines can either be implemented 
using SQL-99 procedural extensions or using code written in external languages as Ada, C, COBOL, 
and many others including Java. ADTs can be related in subtype-supertype relationships, where one 
ADT in SQL-99 can be a subtype of at most one super-type, using syntax 
CREATE TYPE TeamLeader_T UNDER Employee_T 

Instances of sub-types inherit attributes as well as the behaviour of its super-type and can be 
substituted wherever instances of some its super-type are expected. Resolution of overloaded routines 
is based on types of all arguments in a routine invocation. Dynamic binding is also supported 
whenever compile-time binding is not possible. However, type checking is always performed at 
compile time. 

ADTs can be used as data types of variables, parameters of routines, attributes of ADTs, or 
columns of tables. Persistent instances of ADTs can be stored in columns of tables and can be queried 
using the familiar SQL constructs. Queries can refer to attributes and functions of ADT instances.  

Although the SQL-99 standard weights much over one thousand of pages, work on the standard 
is not fully finished and many features of SQL3 not contained in SQL-99 is still subject of changes. 
Due to complexity of the standard there exists no complete implementation of it yet. Moreover, there 
are currently no RDBMS supporting the highest (full) level of previous standard SQL-92. The current 
commercial DBMS are still usually compliant only with its lowest (entry) level. Of course, each of 
them provides many additional features, which are unfortunately not compatible with solutions from 
other vendors. The differences go from using non-standard data types to absolutely different languages 
for coding of stored procedures and triggers. 

2.2.1 Object-oriented features in Oracle server 

The Oracle Company becomes to the biggest database server vendor currently on the market. In 
reaction to appearance of OODBMSs it implants some object-oriented features to its relational 
database server. Since the version 8 the server supports storage of nested relations, definition of 
variable arrays and – from the scope of this thesis most interesting – support of user defined types and 
objects.  



 6

In spite of the fact, that the Oracle company is one of contributors of above discussed SQL-99 
standard, its Oracle implementation lacks many important features. Firstly, it is not possible to derive 
types from another types. Inexistence of inheritance and polymorphism significantly decreases 
usability of ADT. Also syntax of object definition differs from the one proposed by the ANSI 
standard. In Oracle SQL the data type Person_T should be defined in two parts. First part declares all 
members of the type. The second defines bodies of all methods. This approach goes out of older 
definition of package syntax. 
CREATE TYPE Person_T AS OBJECT 
( 
    first_name VARCHAR2(30), 
    last_name VARCHAR2(30), 
    birth_date DATE, 
    MEMBER FUNCTION age RETURN NUMBER 
); 
CREATE TYPE BODY Person_T AS  
    MEMBER FUNCTION age RETURN NUMBER 
    IS 
<the source code of the function age> 
END; 

The sub-type Employee_T can be defined either as independent type 
CREATE TYPE Employee_T UNDER Person_T 
( 
    first_name VARCHAR2(30), 
    last_name VARCHAR2(30), 
    birth_date DATE, 
    MEMBER FUNCTION age RETURN NUMBER 
    id NUMBER(10), 
    salary NUMBER(7,2) 
); 
or using reference 
CREATE TYPE Employee_T AS OBJECT  
( 
    refPerson Ref Person_T, 
    id NUMBER(10), 
    salary NUMBER(7,2) 
); 

Together with object extensions of its original SQL language the Oracle Corporation brings 
newer generation of the OCI, the Oracle Call Interface, which provides the API between the 
applications and the database server. Specifically, the following capabilities have been added to the 
OCI: 

• Support for execution of SQL statements that manipulate object data and object schema 
information. 

• Support for declaring object references and instances as variables, fetching them from a database 
and passing them as input variables. 

• Client side object cache. 

The object cache is a client-side memory buffer that provides lookup and memory management 
support for objects. It stores and tracks object instances, which have been fetched by an OCI 
application from the server to the client side.  
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2.3 SQL-92 

Though this ANSI/ISO standard is years older than its successor, its entry level is no doubt the 
most widespread database standard available. All current database vendors declare compatibility of its 
current products with it. It becomes perquisite of interoperability with many database interfaces as 
ODBC, JDBC and many others. 

2.4 Object Databases and Object-Relational Wrappers 

Advancements in object-oriented technologies have brought number of products that allow 
connecting of OO programs with object and relational data stores. Individual approaches differ in 
many aspects. We can mention number of supported languages, level of the transparency, database 
independence etc. One of important features is also quality of multi-user database access, which 
implies transactional database access, synchronisation between the database and memory. 

Among the OO database management systems we can mention commercial products as 
ObjectStore, ONTOS DB or Versant. 

ONTOS DB is an object-oriented database product developed by ONTOS, Inc., which provides 
C++ interface. ONTOS DB defines persistent storage capability for all and only objects derived from 
the class Object. It means that any class whose instances are to be stored persistently must be inherited 
from this class. On the other hand, all instances of all inherited classes are automatically persistent. 

Persistent objects under ONTOS DB are accessed via pointers in an application. ONTOS DB 
retrieves objects from the database and places them in an application’s memory space. There are three 
different concurrency control strategies available in the database, controlled by statements for 
beginning, aborting, committing transaction. Additionally the concurrency model supports savepoints. 
Savepoints allows storing checkpoint in the middle of running transaction and rolling the transaction 
partially back to this checkpoint. At the start of transaction the application can choose among 
pessimistic, optimistic, and time-based strategies. Associations between objects are modeled using 
uni-directional one-to-one references. 

 Versant, developed by Versant Object Technology Corp. binds not only to C++, but also to 
other languages as ANSI C and SmallTalk. Persistent capable classes allow both persistent and 
transient instances, depending on the way they are created. Similar to ONTOS DB the pointers in C++ 
are overloaded to ensure that referenced objects are located in memory when accessed. 
Association can be defined as both uni-directional and bi-directional. Depending on the 
declaration they return either one reference or collection of references that can be iterated. In 
case of bi-directional association the database automatically synchronizes both directions. 

The ObjectStore database also access object instances via pointers. In difference with above 
discussed solutions it uses so called virtual memory mapping architecture. Missing object in the 
memory causes memory fault exception, handled by the system. 

Apart of object-oriented databases, the closest to the goal of this thesis are object-relational 
wrappers.  There are currently available wrappers, mostly ODMG compliant, like ObjectDriver 
developed by CERMICS Database Team. The ObjectDriver builds a virtual OODBMS over the 
relational database, accessible through an ODMG interface. It is available for Java and C++. Similar to 
it is also UFO-RDB wrapper developed at University of Frankfurt, but this one is fully oriented to Java 
language. 

2.5 Résumé 

The goal of this thesis is not implement yet another ODMG compliant object wrapper. It 
concerns on solution that supports object model with most of advanced object-oriented features with 
respect to relational structure of the database and its limitation. 
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The object model should support multiple inheritance. Unfortunately the multiple inheritance of 
ADT’s is not standardised even in the latest SQL standard.  Moreover, available object extensions 
regardless of the inheritance aspects implemented in current versions of database servers are not fully 
compliant with this standard. This fact substantially complicates the portability of solutions that 
require SQL-99 compliant relational features. Proposed solution should therefore require only SQL-92 
entry-level compliant database. The mapping of object model onto database schema shouldn’t, 
however, prevent utilisation of newer features in the future. 

Portability of stored procedures is poorly supported. Databases use its own procedural SQL 
extensions with mutually different syntax and semantics. Thus the requirement to store object methods 
in SQL and invoke them from the application has low priority. This thesis doesn’t consider persistency 
of object methods in the database at all. We consider methods as persistently defined in C++ code. 

The unnecessary transformation between object and relational paradigms should be as most as 
possible transparent for the programmer to eliminate the impedance problem. This requirement 
includes an automatic SQL generation for object retrieval and manipulation. Object instances in the 
database should be automatically mapped into the memory during pointer dereference, as usual in 
object-oriented database interfaces. Changes of internal object states should be automatically 
propagated back to the database.  

The approach allowing both persistent and transient instances has advantages over the system 
that allows only persistent instances of given class. The manipulation with both types of instances 
should be the same for the programmer.  

Searching of objects according to their content is an essential extension of database application 
over the standard ones. Considering it, the solution should contain an object query language that is 
optimised for relational databases. Target OO language for us is the C++. Of course the query 
language should not be restricted by this assumption. 

There should be supported uni-directional associations based on object pointers, as well as 
bi-directional associations between classes. The query language should incorporate manipulation with 
associated instances. 
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3 Object Persistency Concepts 

This chapter formally defines the theoretical framework of the thesis. The relational nature of 
stored data is hidden behind the transparent object database interface. The object database interface is 
described formally using its database schema. The application accesses data using the query language 
similar to the relational algebra. The combination of features of relational algebra with object-oriented 
database model allows easy access to object instances and its sets with respect to the effectiveness of 
database operations. Operations of the object algebra, as we named the query language, are then 
translated to the SQL. This translation is described in two steps. Using of relational algebra allows 
more formalism and abstracts the translation from differences of particular SQL dialects. 

3.1 Object Database Schema 

The specific requirements concerning the representation of the object model in the relational 
database lead us to the proposal of the object database schema that handles differently class hierarchies 
and binary associations of classes. 

Definition 3.1-1 – Object database schema 

An object-database schema is a 7–tuple 

Do = (CCCC, MMMM, RRRR, isa, memattr, lclass, rclass), where 

1. CCCC is a finite set of classes 

2. MMMM is a finite set of member attributes 

3. RRRR is a finite set of (binary) associations 

4. isa ⊆ CCCC × CCCC such that (CCCC, isa) forms an acyclic specialisation graph . 

5. memattr : CCCC → powerset(MMMM) is a total mapping such that 

memattr(X) ∩ memattr(Y) = ∅ if X ≠ Y 

6. both lclass : RRRR → CCCC and rclass : RRRR → CCCC are total mappings 

♦ 

According to this definition we will assume the object–database schema to consist of set of 
classes, forming acyclic subclass hierarchy. A set (possibly empty) of member attributes is assigned to 
each class. Moreover the scheme contains set of binary class associations. Associations are part of 
object-oriented paradigm. Through associations, objects can point one to another. This feature allows 
objects to create a network of interconnected nodes. The relationships between objects can be divided 
into categories. Depending on the point of view, we obtain different classification of relationships. As 
many other approaches, we concern now only on binary, not ternary or n-ary associations. Thus, each 
of associations interconnects two not necessarily different classes. 

Definition 3.1-2 – Generalised specialisation graph 

The generalised specialisation graph (CCCC, isa*) is a reflexive and transitive closure of the 
specialisation graph (CCCC, isa) 

1. Ci isa* Ci for each Ci ∈ CCCC 

2. Let Ci isa Cj. Then Ci isa* Cj 
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3. Let Ci isa* Cj ∧ Cj isa* Ck then Ci isa* Ck 

♦ 

While specialisation graph determines direct predecessors and successors, its generalised form 
allows simpler formal manipulation with all predecessors and successors of particular class.  

Definition 3.1-3 – Predecessors and successors 

Specialisation graph (CCCC, isa), respectively its generalised form (CCCC, isa*) defines four additional 
total mappings pred, pred*, succ and succ* as follows: 

1. pred: CCCC → powerset(CCCC), such that pred(C) =def {X | C isa X} which returns all direct predecessors 
of given class C. 

2. pred*: CCCC → powerset(CCCC), such that pred*(C) =def {X | C isa* X} which returns all predecessors, 
direct or indirect of given class C. 

3. succ: CCCC → powerset(CCCC), such that succ(C) =def {X | X isa C} which returns all direct successors of 
class C. 

4. succ*: CCCC → powerset(CCCC), such that succ*(C) =def {X | X isa* C} which returns all successors, direct 
or indirect of given class C. 

♦ 

Because we allow multiple inheritance (and thus the isa hierarchy doesn’t form a tree but an 
acyclic graph), each of four above–defined mappings can return a set containing more than one 
element. 

Example 3.1-1 – object database schema 

Consider database schema with CCCC = {C1,C2,C3,C4,C5,C6,C7} and with member attributes 
MMMM = {M1,M2,M3,M4,M5,M6,M7} where each class contains one member attribute with the same 
index i.e. memattr(Ci) = {Mi}. Consider the isa hierarchy defined as shown on following picture. 

 
Figure 3.1-1 Class hierarchy 

According to previous definitions pred(C5) = {C2}. Class can have none or more than one direct 
predecessor. In the graph above pred(C2) = ∅ and pred(C6) = {C4, C5}. 

♦ 

From the definition of isa and isa* relations immediately follow below stated properties. 

Lemma 3.1-1 

1. ∀X∈CCCC (X ∈ pred*(X)) – reflexivity 
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2. ∀X∈CCCC (X ∈ succ*(X))  – reflexivity  

3. ∀X∈CCCC (X ∉ pred(X))  

4. ∀X∈CCCC (X ∉ succ(X))  

5. ∀X,Y∈CCCC (((X ∈ pred*(Y)) ∧ (Y ∈ pred*(X))) ⇒ (X = Y))  – antisymmetry 

6. ∀X,Y∈CCCC (((X ∈ succ*(Y)) ∧ (Y ∈ succ*(X))) ⇒ (X = Y))  – antisymmetry 

7. ∀X∈CCCC (pred(X) ⊂ pred*(X))  

8. ∀X∈CCCC (succ(X) ⊂ succ*(X))  

9. ∀X,Y∈CCCC ((X isa* Y) ⇒ (pred*(Y) ⊆ pred*(X)) 

10. ∀X,Y∈CCCC ((X isa Y) ⇒ (pred*(Y) ⊂ pred*(X)) 

11. ∀X,Y∈CCCC ((X isa* Y) ⇒ (succ*(X) ⊆ succ*(Y)) 

12. ∀X,Y∈CCCC ((X isa Y) ⇒ (succ*(X) ⊂ succ*(Y)) 

Proof: 

1., 2.: From reflexivity of generalised specialisation graph (Definition 3.1-2) follows that 

∀X∈CCCC (X isa* X)). 

According to Definition 3.1-3 hold 

∀X∈CCCC (X isa* X)) ⇒ ∀X∈CCCC (X∈pred*(X)) 

∀X∈CCCC (X isa* X)) ⇒ ∀X∈CCCC (X∈succ*(X)) 

3., 4.: From X ∈ succ(X), respectively from X ∈ pred(X) follows that X isa X, which is in 
contradiction with assumed acyclicity of generalisation graph. 

5., 6.: Let X ≠ Y, X ∈ pred*(Y) and Y ∈ pred*(X), respectively X ∈ succ*(Y) and 
Y ∈ succ*(X). In both cases exist classes C1, ... Ck, Ck+1, ... Cn such that 
X isa C1 isa ... isa Ck isa Y isa Ck+1 isa ... isa Cn isa X, which is in contradiction with assumed 
acyclicity of the specialisation graph. 

7.: ∀X,Y∈CCCC((Y ∈ pred(X)) ⇔ (X isa Y) ⇒ (X isa* Y) ⇔ (Y ∈ pred*(X))). 
Thus ∀X∈CCCC (pred(X) ⊆ pred*(X)). Moreover, according to (1) and (3) hold X ∈ pred*(X) and 
X ∉ pred(X). 

8.: ∀X,Y∈CCCC((Y ∈ succ(X)) ⇔ (Y isa X) ⇒ (Y isa* X) ⇔ (Y ∈ succ*(X))). 
Thus ∀X∈CCCC (succ(X) ⊆ succ*(X)). The inequality of sets results from (2) and (4). 

9.: Let (X isa* Y) and (Z∈pred*(Y)). According to Definition 3.1-3 holds (Z∈pred*(Y)) ⇔ (Y 
isa* Z). From the transitivity of isa* we get (X isa* Z), i.e. (Z∈pred*(X)).  

10.: Let (X isa Y) and (Z∈pred*(Y)). From the definition of generalised specialisation graph 
(CCCC, isa*) follows, that (X isa* Y). From (9) we know that pred*(Y) ⊆ pred*(X). To prove the rest of the 
affirmation we show that X∉pred*(Y). Let suppose the converse statement X∈pred*(Y). Because 
Y∈pred*(X), from (5) follows that X equals to Y. This equivalence produces (X isa X) which is in 
contradiction with acyclicity. 

We know, that X isa* Y. Let suppose that X∈pred*(Y), i.e. that Y isa* X. Then necessarily X is equal 
to Y from antisymmetry of pred*. But this equivalence is in contradiction with acyclicity of  

11.: Similar to (9) 

12.: Similar to (10) 
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♦ 

Definition 3.1-4 – Minimal an maximal elements 

Let C ⊆ CCCC. Minimal element of set C is any class, which has no successor within the set. 
Correspondingly, we can define maximal element of set C. Total mappings 

1. min: powerset(CCCC) → powerset(CCCC) 

where min(C) = {X∈C | succ(X)∩C = ∅} and 

2. max: powerset(CCCC) → powerset(CCCC) 

where max(C) = {X∈C | pred(X)∩C = ∅} map sets of classes to sets of its minimal, respectively 
maximal elements. 

♦ 

Classes in set max(CCCC) have no predecessor at all and form roots of inheritance in the object 
model. Considering set CCCC from an Example 3.1-1 we obtain results max(CCCC) = {C1, C2} while 
min(CCCC) = {C3, C6, C7}. 

Many of presented algorithms uses notion of common predecessor, common successor, or 
especially least common predecessor and greatest common successor. To define such concepts, we 
introduce four additional total mappings. 

Definition 3.1-5 – (Least) common predecessors and (greatest) common successors 

1. cp: powerset(CCCC) → powerset(CCCC), such that cp(C) =def ∩X∈Cpred*(X) which returns all common 
predecessors of given set. 

2. cs: powerset(CCCC) → powerset(CCCC), such that cs(C) =def ∩X∈Csucc*(X) which returns all common 
successors of given set. 

3. lcp: powerset(CCCC) → powerset(CCCC), such that lcp(C) =def min(cp(C)) which returns all least common 
predecessors of given set. 

4. gcs: powerset(CCCC) → powerset(CCCC), such that cs(C) =def max(cs(C)) which returns all greatest 
common successors of given set. 

♦ 

For example cp(C3, C6) = {C1, C3} ∩ {C1, C2, C4, C5, C6} = {C1}. Featuring multiple 
inheritance all four functions can return multi-element sets. Here cp(C6, C7) = {C1, C2, C4, C5} and 
lcp(C6, C7) = {C4, C5}. 

Following definition is essential for manipulation with associations. 

Definition 3.1-6 – Connected classes 

Let Ci, Cj ∈ CCCC. We say that classes Ci and Cj are connected, if and only if the set cs({Ci, Cj}) is 
not empty. 

Pairs of classes C1 and C6, respectively C4 and C5 in Example 3.1-1 are connected. Classes C3 
and C5 are not.  

♦ 

Lemma 3.1-2 

1. ∀X∈CCCC (X is connected with X) – reflexivity 
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2. ∀X,Y∈CCCC (X is connected with Y) ⇔ (Y is connected with X) – symmetry 

3. Let X isa Y. Then X is connected with Y. 

Proof: 

1.: Because X ∈ succ*(X), the set cs({X}) that is equal to succ*(X), is not empty. 

2.: Symmetry follows from the fact, that the definition of common predecessor doesn’t recognise order 
of classes in the set. 

3.: X ∈ succ*(X) ⊂ succ*(Y). Thus, X ∈ succ*(X) ∩ succ*(Y). 

♦ 

Similar way, as the isa relation is extended, we can define a generalised form of memattr 
mapping to obtain all member attributes including those indirectly inherited. 

Definition 3.1-7 – Generalised membership 

Generalised membership is determined by the total mapping memattr*: CCCC → powerset(MMMM) such 
that memattr*(X) = ∪∪∪∪Y∈pred*({X})memattr(Y). 

♦ 

In the Example 3.1-1 we among others obtain memattr*(C6) = {M1, M2, M4, M5, M6}. 

The classes in the object database should be stored finally in the relational database. Table 
schemas usually describe their content. We can use similar approach here to unify both object and 
relational approaches. 

Definition 3.1-8 – (Inherited) class schema 

For each class C ∈ CCCC we define its class schema C(P, M) and its inherited class schema C*(M*), 
where 

1. P =def pred(C) is a set of direct parent classes, and 

2. M =def memattr(C) is a set of member attributes  

3. M* =def memattr*(C) is a set of member attributes including inherited members. 

♦ 

Lemma 3.1-3 

Let Y ∈ CCCC is class with schema Y(Py, My). Let X isa* Y. Then Mx
* ⊇ My

*. 

Proof: 

From X isa* Y according to Lemma 3.1-1 (9) follows that pred*(Y) ⊆ pred*(X). Then also 
∪∪∪∪C∈pred*({Y})memattr(C) = memattr*(Y) = My

* ⊆ Mx
* = memattr*(X) = ∪∪∪∪C∈pred*({X})memattr(C). 

♦ 

Relationships are binary and typed. They associate pairs of object instances, where each object 
must belong to the specified class. The required types can be described using schema of the 
association. 

Definition 3.1-9 – Association schema 

For each association R ∈ RRRR we define its association schema R(Cl, Cr) 
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1. Cl =def lclass(R) is a left-side class of an association, and 

2. Cr =def rclass(R) is a right-side class of an association 

We will use terms left and right side of the association to refer to the classes on first and second 
place of association’s schema  

♦ 

Definition 3.1-10 – Domain of member attribute 

Let M ∈ MMMM is a member attribute. Domain of member attribute M, denoted as dom(M), is a set 
of all allowed values of attribute M. 

♦ 

Definition 3.1-11 – (Inherited) domain of class 

Let C ∈ CCCC. Then 

1. dom(C) = ××××M∈memattr(C)dom(M) is domain of class C  

2. dom*(C) = ××××M∈memattr*(C)dom(M) is inherited domain of class C  

♦ 

Definition 3.1-12 – Object database instance 

An object database instance of schema Do is any quadruple D = (OOOO, inst, val, rel), where 

1. OOOO is a finite ordered set of object instances. 

2. inst : CCCC → P(OOOO) is a total mapping such that 

a. if Cj isa* Ci then inst(Cj) ⊆ inst(Ci)  

b. if o ∈ inst(Ci) ∩ inst(Cj) then exists its common successor C such o ∈ inst(C) 

3. val : OOOO × MMMM → ∪∪∪∪M∈MMMM dom(M) is defined as follows 

a. val(o, M) ∈ dom(M) if o ∈ inst(C) and M ∈ memattr(C) 

b. elsewhere val is not defined 

4. rel ⊆ ∪∪∪∪R∈RRRR(R × inst(lclass(R)) × inst(rclass(R))) 

According to this definition the mapping inst assigns a set of instances to each class and 
mapping val assigns a value to each relevant attribute of that class. Relation rel defines couples of 
associated object instances. 

To simplify further text, we will replace symbol “inst(C)” by shorter “C” in bold font. By the 
same reason, the expression “val(o, M)” is abbreviated as “o.M” 

♦ 

Definition 3.1-13 – Instance class 

Mapping classOOOO: OOOO → CCCC is inverse mapping to inst that assigns class to any object instance such 
that class(o) is a minimal element of the set {C | o ∈ inst(C)}. 

♦ 
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Lemma 3.1-4 

Each object instance o has the set {C | o ∈ inst(C)}one and only one minimal element. 

Proof: 

This fact follows from points 2a and 2b of object database instance definition. If there were two 
different minimal elements C1 and C2, there should exist its common successor C such that inst(C) 
contains the object. This is in contradiction with our choice of minimal elements. 

♦ 

Definition 3.1-14 –Memory attribute class mappings 

We can define total mapping classMMMM: MMMM → CCCC such that M ∈ memattr(classMMMM(M)). 

♦ 

3.2 Object Algebra 

This chapter describes the object algebra – a query language introduced in this thesis. Object 
algebra comes from the relational algebra, but its concept was modified to suite the object database 
model with its operations as well as the relational database concept, which is used to store persistent 
data.  

Resulting set of language operators presented and implemented in this thesis is a compromise 
between the possible power of the query language, requirements of programmers and effectiveness of 
query evaluation. 

Having the relational database engine to store persistently object data manipulated by the 
application, we can provide object instance retrieval based on internal values of member attributes. 
This feature in its general form is extension to usual possibilities, offered by non-persistent 
object-oriented languages. Its special form – retrieving of one complete particular instance having 
specified object identification is must-to-have feature. It corresponds to dereferencing of the object 
address (object pointer) in the object–oriented programming language. The general form we call object 
selection due to its similarity to the relational paradigm.  

One of requirements to object selection is to provide results in form maintainable by the 
object-oriented program. To meet this requirement, we will allow only such queries, which returns sets 
of objects, derived from exactly one specified parent class, preserving their polymorphism. Then we 
can consider the result the polymorph set of successors of the given class. 

3.2.1 Predicates 

Before we can define the object selection, we need a notion of Boolean predicate. 

Definition 3.2-1 – Boolean predicate 

A Boolean predicate is any function 

ϕ : OOOO → {true, false} 

We could consider all predicates as totally defined. If the predicate couldn’t be evaluated on 
particular object, it can be easily extended to return false in all such cases. But for practical reasons, 
we will assume, that the given predicate is applicable (valid) only on instances of some classes. 

For each predicate ϕ we define set 

memattr(ϕ) of member attributes, that appear in the formula and also set 
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valid(ϕ) of classes the predicate can be evaluated on. The set valid(ϕ) can be determined from 
following equivalence. 

(C∈valid(ϕ)) ⇔ (memattr(ϕ) ⊆ memattr*(C)) 

Because the set memattr*(C) grows going from predecessors to successors, any predicate that 
can be evaluated on particular class can be also evaluated on all its successors. 

♦ 

Definition 3.2-2 – Atomic Boolean predicate 

An atomic Boolean predicate is any expression in form 

1. true, with memattr(true) = ∅ and valid(true) =  CCCC 

2. false, with memattr(true) = ∅ and  valid(true) =  CCCC 

3. expr1 Φ expr2, with  

memattr(expr1 Φ expr2) = memattr(expr2) ∪ memattr(expr2) 

valid(expr1 Φ expr2) = valid(expr1) ∩ valid(expr2) 

where expr1 and expr2 are comparable well-bracket expressions consisting of names of member 
attributes, constants and applicable operators and symbol Φ stands for one of operators “=”, ”≠” , ”≤ 
“, ”≥ , ”< , ”>” and “like”. 

To those variants, we can add fourth form of the atomic predicate for each object instance o 

4. o, with memattr(o) = ∅ and  valid(o) =  CCCC , where (o(x) = true) ⇔ (x = o)  

♦ 

Definition 3.2-3 – General atomic predicate 

Using logical operators, we can construct more general predicates from atomic ones. 

Let ϕi, resp. ϕj are Boolean predicates valid on C i, resp. C j. Then 

1. ϕi ∧ ϕj is Boolean predicate valid on C i ∩ C j such that 

(ϕi ∧ ϕj)(o) = def (ϕi(o)) ∧ (ϕj(o)) 

2. ϕi ∨ ϕj is Boolean predicate valid on C i ∩ C j such that 

(ϕi ∨ ϕj)(o) = def (ϕi(o)) ∨ (ϕj(o)) 

3. ¬ϕi is Boolean predicate valid on C i such that 

(¬ϕi)(o) =def ¬(ϕi(o)) 

4. (ϕi) is Boolean predicate valid on C i such that 

(ϕi)(o) =def ϕi(o) 

♦ 

3.2.2 Object selection 

Definition 3.2-4 – Object selection 

Let C is a class. Let ϕ is a Boolean predicate applicable on C. Then 

the object selection C(ϕ) = {x ∈ inst(C) | ϕ(x) = true} = inst(C) ∩ ϕ-1(true) 
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♦ 

Example 3.2-1 – Object database 

Consider simple object database hierarchy as shown on following picture. 

 
Figure 3.2-1 Object model 

Member attributes are attached to classes as follows: 

memattr(Person)={Name,Age}, 
memattr(Programer)={PreferredLanguage}, 
memattr(Leader)=∅, 
memattr(Project)={Title,Language} 

Object selection can retrieve all projects written in C++ using statement 
Project(Language=’C++’).  We can also obtain set of all persons younger than 40 years by object 
algebra query Person(Age<40). To find out all programmers in ADA older than 35 years we have to 
construct another query in form Programmer((Age>=35)∧(PreferredLanguage=’ADA’)). 

♦ 

Relational algebra defines beside selection also projection as one of basic operators. As we want 
to retrieve a polymorph set of instances with all member attributes and properties, the projection has 
no use in object algebra. Here is first of differences with relational algebra, where all resulting tuples 
are supposed to have the same structure. 

3.2.3 Set operators 

Prospective adoption of set operators as set-union, set-intersection and set-difference known 
from relational algebra is all but straightforward. Our demand of uniquely defined resulting class of 
any expression restricts utilisation of set operators. 

3.2.3.1 Set-difference 

We start from the less complicated operator – the set-difference. Suppose that predicate ϕ1 is 
valid on C1 and ϕ2 is valid on C2. Then all resulting instances of the set-difference 

C1(ϕ1)\C2(ϕ2) 

can be considered the instances of C1. The expression Person\Programmer(Age>=35) returns all 
persons except programmers older than 35. There is no limitation on classes that can be subtracted. 
Classes need not be connected as in expression 

Programmer(PreferredLanguage=’C++’)\Leader(Age<50). 

and the set-difference will work even if subtracted classes will not have common predecessor as in 
query 

Programmer(PreferredLanguage=’C++’)\Project(Language<’C++’). 
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Lemma 3.2-1 

Let predicate ϕ1 is valid on C1, let ϕ2 is valid on C2. 

1. if classes C1 and C2 are not connected, then C1(ϕ1)\C2(ϕ2) = C1(ϕ1) 

2. if C1 isa* C2, then C1(ϕ1)\C2(ϕ2) = C1(ϕ1)\C1(ϕ2) = C1(ϕ1∧¬ϕ2) 

Proof: 

1: Because classes are not connected, the intersection inst(C1) ∩ inst(C2) must be according the 
Definition 3.1-12 empty. Since C1(ϕ1) ⊆ inst(C1) and C2(ϕ2) ⊆ inst(C2), also C1(ϕ1) ∩ C2(ϕ2) = ∅. 
From emptiness of the intersection follows that C1(ϕ1)\C2(ϕ2) = C1(ϕ1) 

2: From C1(ϕ1) ⊆ inst(C1) follows that C1(ϕ1)\C2(ϕ2) = C1(ϕ1)\(inst(C1) ∩ C2(ϕ2)). 

♦ 

3.2.3.2 Set-intersection 

In case of set-difference we can positively determine the resulting class. On the other hand the 
set-intersect operator can be defined as 

C1(ϕ1) ∩ C2(ϕ2) = C1(ϕ1)\(C2(ϕ2)\C1(ϕ1)) = C2(ϕ2)\(C1(ϕ1)\C2(ϕ2)) 

Due to the symmetry of the operator we can consider resulting instances to belong to any of both 
classes.  

Lemma 3.2-2 

Let predicate ϕ1 is valid on C1, let ϕ2 is valid on C2. then 

1. if classes C1 and C2 are not connected, then C1(ϕ1) ∩ C2(ϕ2) = ∅ 

2. if C1 isa* C2, then C1(ϕ1) ∩ C2(ϕ2) = C1(ϕ1) ∩ C1(ϕ2) = C1(ϕ1∧ϕ2) 

3. if classes C1 and C2 are connected, and gcs(C1,C2)={C}, then 

C1(ϕ1) ∩ C2(ϕ2) = C(ϕ1) ∩ C(ϕ2) = C(ϕ1∧ϕ2) 

Proof: 

1: Classes are not connected. Thus inst(C1) ∩ inst(C2) = ∅. Since C1(ϕ1) ⊆ inst(C1) and 
C2(ϕ2) ⊆ inst(C2), also C1(ϕ1) ∩ C2(ϕ2) = ∅. 

2: C1(ϕ1) ∩ C2(ϕ2) = inst(C1) ∩ ϕ1
-1(true) ∩ inst(C2) ∩ ϕ2

-1(true). Because inst(C1) ⊆ inst(C2), 
we can rewrite the formula in form inst(C1) ∩ ϕ1

-1(true) ∩ inst(C1) ∩ ϕ2
-1(true) which correspond to 

the query C1(ϕ1) ∩ C1(ϕ2) 

3: Because there is only one class derived from both classes C1 and C2, 
inst(C1) ∩ inst(C2) = inst(C). 

♦ 

In case when there are more independent common successors, i.e. if gcs({C1,C2}) contains more than 
one element we cannot re-formulate the intersection by corresponding object selection formula. 
Choosing one of common successors C ∈ gcs({C1,C2}) leads to more specific substitution C(ϕ1∧ϕ2). 

This query is of course not equivalent with the original one. 
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3.2.3.3 Set-union 

Set-union is last of three set operators used in relational algebra. In its general form it doesn’t 
correspond with our requirement of one resulting class. Supposing the query in form 

C1(ϕ1)∪C2(ϕ2) 

the result should contain elements belonging to either class. To represent the result as polymorph set, 
we need to choose the result class from potentially more common successors. In some cases the 
common predecessor need not even exist. Transformation of the query to form 

C(ϕ1)∪C(ϕ2) = C(ϕ1∨ϕ2) 

where C is one of common predecessors of both classes may fail. Predicates ϕ1 and ϕ2 may not be 
valid on class C due to utilising some of not yet defined member attributes.  

3.2.3.4 Object algebra without set operators 

After consideration of advantages and disadvantages of set operators we choose not to 
implement them in its general form. As shown in previous sections most of cases are covered by 
object selection together with its polymorph behaviour. Some of others are feasible by utilisation of 
operators on associations as discussed in next chapters. 

Sometimes, the inexistence of efficient object algebra query may be caused by improper object 
design of the application.  

Example 3.2-2 – another variant of object database 

This decision makes impossible to retrieve both programmers and project leaders younger than 
forty. Note that there can be persons, which don’t write programs nor lead projects in the database. 
Query in form 

Programmer(Age<40)∪Leader(Name<40) 

is not supported. To allow such query, the database schema should be slightly redesigned as shown on 
next picture. 

 
Figure 3.2-2 Modified object model 

On this schema, the query in form Programmer(Age<40) match our needs. In this case the 
reasonable modification of object model also allows project leader to take part of programming job. 

♦ 

3.2.4 Associations and object algebra 

Above described selection operator is stronger than referencing objects from another objects by 
pointers. Pointers are the only way of accessing (dynamically allocated) objects in higher 
object-oriented languages as C++. Whenever object should be associated with another one, pointers or 
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sets of pointers must be defined inside instances. Associations based on pointers are unidirectional. It 
is possible to traverse them only in one direction. Whenever associations should be bi-directional, 
programmer must solve bi-directionality himself combining two independent references. In contrast 
with this approach relational databases provide mechanism for representing associations with arbitrary 
arity having schema R(C1, C2,…, Cn). Depending on the value of parameter n in the definition of the 
association, we can speak about binary associations (n=2), ternary associations (n=3), or generally 
about n-ary associations. 

Associations represented in the relational database are always multi-directional. For each (n-
1)-tupl o1, o2, …, oi-1, oi+1, …, on of object instances we can determine the set Ri of instances of class 
Ci associated with given (n-1)-tupl as follows 

Definition 3.2-5 – Associated instances 

Let R is n-ary association with schema R(C1, C2,…, Cn). For each 1<=i<=n we define mapping 
Ri : inst(C1)×inst(C2)×...×inst(Ci-1)×inst(Ci+1)×...×inst(Cn) → powerset(inst(Ci)) such that 

Ri(o1, o2, …, oi-1, oi+1, …, on) =def { o | (o1, o2, …, oi-1, o, oi+1, …, on)∈R} 

♦ 

We chose to support only binary associations in our object model, as well as most OODBMS 
standards including the standard ODMG-93 do. On the other hand, we want to preserve other 
advantages offered by relational model in the object algebra. 

Each instance of binary association R with the schema R(C1, C2) can be considered as a subset 
of Cartesian product inst(C1) × inst(C2). We can define two unary operators left and right, which 
return instances of left, respectively right class associated with at least one instance on the opposite 
site. 

1. left(R) = {o | ∃x∈inst(C2)(<o,x>∈R} and 

2. right(R) = {o | ∃x∈inst(C1) (<x,o>∈R} 

Possible cardinalities of associated instance sets R1(o) and R2(o) determine cardinality of the 
association R. If the cardinality of one of those sets cannot exceed one we speak about one-to-many 
association. One-to-one associations limit cardinality of both sets to one. The most general, 
many-to-many, associations don’t limit number of associated objects on any side. Associations of 
different cardinalities can slightly differ in implementation details, but in scope of object algebra we 
can treat them uniformly. 

3.2.5 Manipulating associations 

Operators left and right together with object selection returns sets of object instances and can 
be used to query the object database. To implant possibilities offered by the database engine, we 
introduce set of operations for manipulation with associations. Beside association defined by the 
programmer we can use implicit associations defined by the class hierarchy.  

Definition 3.2-6 – Natural associations 

We introduce natural association Ci⊗Cj of any two classes Ci and Cj. in the class inheritance 
graph. It can be defined as 

Ci⊗Cj = {<oi,oj> | (oi ∈ inst(Ci)) ∧ (oj ∈ inst(Cj)) ∧ (oi = oj)} = {<o,o> | o ∈ (inst(Ci) ∩ inst(Cj))} 

♦ 

This association associates each instance belonging to both classes with self. If classes Ci and 
are not connected, the instance of the natural association is empty because there exist no instance 
belonging to both classes. 
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Example 3.2-3 – Natural association 

Because class Leader is derived from class Person, the association Person⊗Leader contains one 
element for each project leader in the database. Both polymorph sets left(Person⊗Leader) and 
right(Person⊗Leader) are the same. The difference is in the base class of both sets – Person versus 
Leader. 

♦ 

Object algebra provides powerful instruments for manipulation with associations. By the 
application of restriction, chaining, and reverse operators the programmer can construct complex 
associations from basic ones.  

Definition 3.2-7 – Restricted association 

Let R is a binary association between classes Ci and Cj. Let ϕi, resp. ϕj are Boolean predicates 
valid on classes Ci, resp. Cj. 

1. Left-side restricted association ϕi*R is a binary association between classes Ci and Cj such that 

(<oi,oj> ∈ (ϕi*R)) ⇔ (<oi,oj> ∈ R ∧ ϕi(oi)) 

2. Right-side restricted association R*ϕj is a binary association between classes Ci and Cj such that 

(<oi,oj> ∈ (R*ϕj)) ⇔ (<oi,oj> ∈ R ∧ ϕj(oj)) 

♦ 

Example 3.2-4 – Restricted association 

All programmers working on project ‘Amoeba’ is possible to obtain utilising query 
right((Title=’Amoeba’)*Project_Programmer). 

Correspondingly, the query left((Title<>’Amoeba’)*Project_Programmer*(Name=’Smith’)) 
returns all projects except project Amoeba, on whose works programmer Smith.  

♦ 

Definition 3.2-8 – Chained association 

Let Rij and Rjk are two associations between classes Ci and Cj1 respectively Cj2 and Ck. We 
define chained association Rij*Rjk between classes Ci and Ck as 

(<oi,ok> ∈ (Rij*Rjk)) ⇔ (∃C ∈ gcs(Cj1, Cj2), ∃o ∈ C)(<oi,o> ∈ Rij ∧ <o,ok> ∈ Rjk) 

♦ 

Natural association together with restriction and chaining can be used instead of set-intersection 
operator. This fact results from equation 

ϕi*(Ci⊗Cj)*ϕj = {<o,o> | o ∈ (inst(Ci) ∩ inst(Cj)) ∧ ϕi(o) ∧ ϕj(o)} = Ci(ϕi) ∩ Cj(ϕj) 

By analogy, the general set-intersection  

C1(ϕ1) ∩ C2(ϕ2) ∩ ...  ∩ Ck(ϕk) 

can be expressed as 

ϕ1*(C1⊗C2)*ϕ2*(C2⊗C3)*...*(Ck-1⊗Ck)*ϕk 

Note that if gcs(Cj1, Cj2) is empty i.e. the inner classes are not connected, chaining of 
associations produces an empty association. Due this reason the associations Project_Programmer 
and Project_Leader cannot be chained in any order. All four combinations (it is possible to chain an 
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association with itself) are empty. To make finding out all programmers working under supervision of 
leader ‘Thompson’ possible, we need to swap sides of one of associations. 

Definition 3.2-9 – Reversed association 

Let R is associations between classes Ci and Cj. Reversed association -R is such association 
between classes Cj and Ci that 

(<oj,oi> ∈ (-R)) ⇔ (<oi,oj> ∈ R) 

Now we can build the query to solve above-mentioned problem. 

right((Name=’Thompson’)*-Project_Leader*Project_Programmer) 

We can even find out all collaborators of programmer Black using query 

right((Name=’Black’)*-Project_Programmer*Project_Programmer) 

♦ 

3.2.6 Operator precedence and associativity 

All binary operators of the same priority except left restriction evaluates from left to right. It 
means that 

Ri*Rj*Rk evaluates as (Ri*Rj)*Rk, 

R*ϕ*ψ evaluates as (R*ϕ)*ψ, 

but 

ψ*ϕ*R evaluates as ψ*(ϕ*R) 

ψ*ϕ*Ri*Rj evaluates as (ψ*(ϕ*Ri)*Rj) 

Evaluation from right to left in case of left restriction is enforced, because operation ψ*ϕ on two 
predicates is not defined 

Priorities of operators, ordered from higher to lower are 

1. natural association 

2. reverse 

3. chaining, restriction 

4. left(), right(), selection 

Lemma 3.2-3 

Above defined operators meet following rules 

1. -(-R) = R 

2. -(Ri*Rj) = (-Rj)*(-Ri) 

3. (Ri*Rj)*Rk = Ri*(Rj*Rk)  

4. (ϕ*R)*ψ = ϕ*(R*ψ)  

5. (R*ϕ)*ψ = R*(ϕ ∧ ψ) 

6. (R*ϕ)*ψ = (R*ψ)*ϕ 

7. ψ*(ϕ*R) = (ψ ∧ ϕ)*R 

8. ϕ*(ψ*R) = (ψ ∧ ϕ)*R 
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9. Ri*ϕ*Rj = (Ri*ϕ1)*Rj = Ri*(ϕ*Rj)  

♦ 

Although the chaining operator is associative, it is not commutative. Swapping operators in 
general produces an association with different schema. 

3.3 Translation to Relational Algebra 

This chapter describes translation of the object algebra into relational algebra. Translation is 
based on mapping of the object database onto relational database management system. This translation 
is not dependent on particular SQL dialect. Expressions in the relational algebra are then easily 
translatable to the final SQL language. 

3.3.1 Relational Database Schema 

In comparison to above introduced object database schema, relational database schema provides 
fewer capabilities. It consists of individual table schemas in at least first normal form. 

Definition 3.3-1 – Relational database schema 

Formally, relational-database schema is a couple Dr = (TTTT, AAAA, attr), where 

1. TTTT  is a finite set of relational table schemas. 

2. AAAA is a finite set of attributes. 

3. attr : TTTT → powerset(AAAA) is a total mapping such that 

attr(X) ∩ attr(Y) = ∅ if X ≠ Y 

Relational database instance is then a set of table instances. 

To represent data of introduced object model in relational database we need to define correct 
mapping, which transforms object database schema and its instance onto their relational equivalents. 

3.3.2 Object mapping 

There are four different approaches of representation object database schema in the relational 
database. In order of decreasing number of needed tables they can be shortly described as “table per 
meta-attribute”, “table per class”, “table per branch” and “table per inheritance tree” mappings. First – 
less used – approach stores each additional attribute of the newly created class in the separate table. 
This situation is demonstrated on following picture. 
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Figure 3.3-1 Table per meta-attribute mapping model 

The second approach stores all member attributes of one class in exactly one relational table in 
the database. 

 
Figure 3.3-2 Table per class mapping model 

In both cases, the values forming one single instance are stored in pieces spread among a set of 
tables. The number of tables depends on used mapping approach. In the first case the number of tables 
needed to store instances of class C is proportional to cardinality of memattr*(C). The total number of 
needed tables equals to cardinality of set MMMM. We have chosen the second possibility, where total 
number of needed tables decreases to size of the set CCCC, storing instance of class C in number of tables 
equal to size of pred*(C). The number of used tables is crucial for effectiveness of the application. The 
fewer tables to be joined, the quicker response we can expect from the database. Other mentioned 
models that map all classes laying on particular inheritance path or even all classes in one component 
of connectedness were not used in spite of even less number of tables. The reason of this decision is 
more complicated maintenance of relational model and its difficult synchronisation with the class 
diagram. Any local change inside particular class can have influence on more than one table.  

To be able to join corresponding data fragments into complete instance, the instances must be 
uniquely identified. For this purpose the artificial number called „object identification“ and 
abbreviated as OID is usually used. Those identifications should be generated automatically by the 
system. Its value is then associated with each instance at the time of its creation and doesn’t change 
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during its lifetime. To store the identification of the instance each table in the database has to contain 
one additional column called OID and declared as a primary key.  

The mapping between arbitrary object database schema and its equivalent relational database 
schema can be formally defined in two steps. First step adds one additional class onto top of the 
inheritance graph with one attribute that holds information about the class of the instance. This 
additional class among others ensures that there is only one maximal element in the inheritance graph 
and simplifies the second step. 

Definition 3.3-2 – Unified form of object database schema 

Let D = (CCCC, MMMM, RRRR, isa, memattr, left, right) is an object–database schema. Then its unified 
form is a couple Du = (CCCCu, MMMMu, RRRR, isau, memattru, left, right) where 

1. CCCCu = CCCC ∪ {CP}, inst(CP) = OOOO 

2. MMMMu = MMMM ∪ {MP}, dom(MP) = CCCC 

3. isau extends isa by the rule Ci isau CP ⇔ Ci ∈ max(CCCC) 

4. memattru(CP) =    MP 

♦ 

Translation of the unified form of object schema database with just one maximal element into 
its relational representation can be then done one table per class basis as defined below. 

Definition 3.3-3 – Relational projection 

Let D = (CCCC, MMMM, RRRR, isa, memattr, left, right) is an unified form of object database schema. Its 
relational projection is a relational database schema D‘ = (TTTT, AAAA, attr) where 

1. TTTT = {C‘ | C ∈ CCCC} ∪ {R‘ | R ∈ RRRR} 

2. AAAA = AAAACCCC ∪ AAAAMMMM ∪ AAAARRRR where 

a) AAAACCCC = {C.OID | C∈CCCC} with dom(C.OID) = N 

b) AAAAMMMM = {M‘ | M∈MMMM} with dom(M‘) = dom(M) 

c) AAAARRRR = {R.L_OID | R∈RRRR} ∪ {R.R_OID | R∈RRRR} with dom(C.L_OID) = dom(C.R_OID) = N 

3. attr(C‘) = {C.OID} ∪ {M‘ | M∈memattr(C)} 

4. attr(R‘) =    {R.L_OID, R.R_OID} 

♦ 

Example 3.3-1 – Equivalent relational database schema 

According to the above formulas we can transform object database schema from the Example 
3.2-1 to the relational database schema where 

TTTT = {CP‘ , Person’, Programmer’, Leader’, Project’, Project_Leader’, Project_Programmer’} 

AAAA = { 
CP.OID, CP.MP, 
Person.OID, Person.Name, Person.Age, 
Programmer.OID, Programmer.PreferredLanguage, 
Leader.OID, 
Project.OID, Project.Title, Project.Language, 
Project_Leader.L_OID, Project_Leader.R_OID, 
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Project_Programmer.L_OID, Project_Programmer.R_OID 
} 

attr(Person’)={Person.OID, Person.Name, Person.Age}, 
attr(Programer’)={Programmer.OID, Programmer.PreferredLanguage}, 
attr(Leader’)={Leader.OID}, 
attr(Project’)={Project.OID, Project.Title, Project.Language} 
attr(Project_Leader’)=Project_Leader.L_OID, Project_Leader.R_OID, 
attr(Project_Leader’)=Project_Programmer.L_OID, Project_Programmer.R_OID 
 

♦ 

Having the equivalent relational–database schema we can define total mappings that transform 
object–database instance onto its equivalent relational representation. 

First, to each class C we uniquely attach corresponding class table 

ΠΠΠΠCCCC : CCCC → TTTT : ΠΠΠΠCCCC(C) = C‘ 

Next, we map each of member attributes of class onto attribute in attached table. 

ΠΠΠΠMMMM : MMMM → AAAAMMMM : ΠΠΠΠMMMM(M) = M‘, that ΠΠΠΠMMMM(M) ∈ attr(ΠΠΠΠCCCC(C)) ⇔ M ∈ memattr(C) 

Third, we map an object relational instance I = (OOOO, inst, val, rel) with the unified schema 
(CCCC, MMMM, RRRR, isa, memattr, left, right) to its equivalent relational instance I‘ so that 

C‘ ={t |∃o∈inst(C)(t.OID=oid(o) ∧ ∀M∈memattr(C)(t.M‘=val(o,M)))} 

R‘ ={t |∃l,r(<R,l,r>∈rel ∧ x.LOID=oid(l) ∧ x.ROID=oid(r))} 

3.3.3 Retrieving Objects in Relational Algebra 

Because object instances are stored in the relational database, we need to translate expressions 
of object algebra to equivalent expressions in relational algebra to retrieve them. We use usual 
notation for relational algebra operations 

1. Operator σp(E) means selection. Symbol p is a predicate 

2. Operator πr(E) denotes projection. Symbol r represents a set of attributes 

3. ρX(E) is an operator that renames relation E to X. 

4. ρA→B(E) renames attribute A of relation E to B 

5. Cartesian product E1 × E2. 

6. Natural join or two relations E1 ⊗ E2 

7. Natural join of arbitrary count of relations ⊗E∈EEEE(E) 

Further, we use set operations 

8. Union E1 ∪ E2 

9. Intersection E1 ∩ E2 

10. Set difference E1 \ E2 

The translation of object algebra expressions on class C starts from evaluation of extended 
attached table instance C‘*. Its rows contain all attributes of the class including those directly or 
indirectly inherited. 

C‘* ={t |∃o∈inst(C)(t.OID=oid(o) ∧ ∀M∈memattr*(C)(t.Mπ=val(o,M)))} 
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The resulting set of rows could be constructed as a natural join of all tables attached to all 
predecessors of the class. Shortly 

C‘* = ⊗X∈pred*(C)(X’) 

Extended attached table is used either for retrieving complete instance o ∈ OOOO from the database 
or for evaluation of object selection. 

In the first case we select one particular row of extended attached table with given OID by 
expression 

σOID=o.OID(⊗X∈pred*(class(o))(X’)). 

Object selection on class C translates to following selection on extended attached table. 

(C(ϕ))‘ = πOID(σϕ‘(C’*)) = πOID(σϕ‘(⊗X∈pred*(C)(X’))) 

The final projection returns only object identifications of wanted instances. Remaining attributes of 
instances are not interesting at this time. Its amount differs for each instance and can contain additional 
attributes not included in the extended attached table. Rules for the translation of object algebra 
predicate to relational algebra are straightforward. 

1. (ϕ1 Θ ϕ 2)’ = (ϕ1’ Θ ϕ 2’) for any predicates ϕ1 and ϕ2 and any operator Θ. 

2. (¬ϕ)’ = ¬(ϕ’) for any predicate ϕ 

3. (M)’ = ΠΠΠΠMMMM(M) = M‘ for any member attribute M 

4. (x)’ = x for any constant x 

Because we need only identifications of objects, it is often unnecessary to join all tables 
attached to all predecessors. Object selection (C(true))‘ need not to be translated to relational algebra 
expression πOID(σtrue‘(⊗X∈pred*(C)(X’))) = πOID(⊗X∈pred*(C)(X’)). The same result we can obtain using 
much simpler expression πOID(σtrue‘(C’)) = πOID(C’). 

Lemma 3.3-1 

Let C ∈ CCCC is a class, let ϕ is a Boolean predicate valid on class C. Then 

(C(ϕ))‘ = πOID(σϕ‘(⊗X∈C∪{Y∈(pred*(C)\C)| memattr(Y)∩memattr(ϕ)≠∅}(X’))) 

Proof: 
According to definition of object database instance holds the implication 

C1 isa C2 ⇒ inst(C1) ⊆ inst(C2) ⇒ πOID(C1’) ⊆ πOID(C2’)  

From it follows that 

πOID(C1’ ⊗ C2’) = πOID(C1’) ⊗ πOID(C2’) = πOID(C1’) 

♦ 

Thus, joining a table attached to class predecessor without additional conditions on its attributes 
doesn’t change number of rows in the relation. Only number of columns is enlarged by attributes of 
the attached table. In case the added columns are not necessary for the evaluation of the object 
selection, we can omit the table at all. On the other hand the table attached to class C itself cannot be 
omitted. Its omission may cause the growth of row count in the result. 

3.3.4 Retrieving Associated Objects in Relational Algebra 

The object database schema mapping represents each association as one relation containing a 
pair of associated keys named L_OID and R_OID. With respect to this notation, a natural association 
C1⊗C2 is translated to relational algebra as 
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1. (C1⊗C2)’ = σL_OID=R_OID(ρOID→L_OID(πOID(C1’))×ρOID→R_OID(πOID(C2’))) 

Left-sided restriction ϕ*R, respectively right-sided restriction R*ϕ of association R between 
classes C1 and C2 can be translated into relational algebra as 

2. (ϕ*R)’ = πL_OID,R_OID(σOID=L_OID(σϕ’(C1’*)) × R’), 

respectively 

3. (R*ϕ)’ = πL_OID,R_OID(σR_OID=OID(R’ × σϕ’(C2’*))) 

Operators left and right translates to 

4. (left(R))’ = πL_OID(ρL_OID→OID(R’)) 

and 

5. (right(R))’ = πR_OID(ρR_OID→OID(R’)) 

Most complicated is translation of chained association. It can be translated either according to 
bracketing or – due to the associativity of used operators – from left to right using above introduced 
formulas. We introduce equivalent translation that corresponds better with the further SQL evaluation. 

(ϕ1*R1*ϕ2*...*Rn-1*ϕn)’ = 
πA1_2.L_OID,An-1_n.R_OID( 
 σϕ’1 ∧ T1.OID=A1_2.L_OID ∧ A1_2.R_OID=T2.OID ∧ σϕ’2 ∧ ... ∧ An-1_n.R_OID=Tn.OID ∧ σϕ’n( 
  ρT1(C1’*) × ρA1_2(R’1) × ρT2(C2’*) × ρA2_3(R’2) × ... × ρAn-1_n(R’n-1) ×ρTn(Cn’*) 
  ) 
 ) 

This translation produces a Cartesian product of all needed relations and then joins corresponding 
rows of relations together. At the end it filters out all unnecessary attributes. Temporary renaming of 
relations in expression is necessary, because one class or one association can appear more than once in 
the object algebra expression. 

3.4 SQL Statement Generation 

Achieving of object persistency with high level of transparency suppose automatic generation of 
the SQL code by the system with minimal needed adjusting made by the programmer during 
application design and coding. Relational algebra expressions give us good fundament for SELECT 
statement generation. In addition to it, object instances have to be able to INSERT themselves to the 
database, modify its data and DELETE themselves from the database at the end of its lifetime. 
Algorithms used for the SQL statement generation are described in general in this chapter.  

Algorithms are described for objects identified by arbitrary keys. In case that all persistent 
classes use simple numeric primary key OID, the SQL statement generation would be slightly simpler. 

We suppose, that each class C provides following basic information about itself: 

1. ClassName(C) .................... Name of the class, e.g. ‘Programmer’  

2. ParentClassNames(C)........ Coma-separated list of direct predecessor names, for example ‘Person’ 

3. Select(C)............................. Coma-separated list of column names, used in SELECT clause, in 
case of Programmer class it should return 
‘OID, PREFERRED_LANGUAGE’ 

4. From(C) ............................. Name of the attached table, used in FROM clause, e.g. 
‘PROGRAMMER’  

5. Where(C) 

6. GroupBy(C) 
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7. Having(C) .......................... Functions Where(), GroupBy() and Having() are defined for 
completeness and more flexibility of SQL generation. In case of 
above-described object database model they should be empty, i.e. 
return an empty string.  

8. PrimaryKey(C)................... Coma-separated list of primary key columns. It must be a sub-set of 
Select(C). It typically returns value ‘OID’. Its generality allows 
uniform maintaining of wider set of class types, not only those 
containing OID. 

Furthermore we require from every object instance o∈OOOO to offer information 

9. PrimaryKeyValue(o) .......... Coma-separated list of values of primary key columns. Again, it 
allows more generality of design than simpler function o.Oid() 

There are three main types of queries: 

• Queries returning set of instances. They correspond to object selection and are used to obtain keys 
(object identifications) of all instances of particular class that fulfil some condition. 

• Queries returning one particular instance. It is used to retrieve object instance according to its 
already known primary key (identification) during pointer dereference. 

• Queries returning set of instances associated via stored, restricted or chained associations. 

Among queries there are three operations: INSERT, UPDATE and DELETE one 
particular instance. 

3.4.1 Transformation of recursive algorithms to iteration 

Almost all algorithms working on the inheritance hierarchy graph becomes recursive once the 
hierarchy allows multiple inheritance and the hierarchy tree adapts to hierarchy graph. The graph must 
be traversed to process all predecessors of particular class every time the object should be updated in 
the database, refreshed in inserted into database, deleted from it and many others. 

To simplify the complexity algorithms, we need to flatten the graph of predecessors of class to 
the list of nodes. Each class in any of those lists must follow all its predecessors. To achieve that 
feature, following algorithm should be executed for each class. 

procedure build_parent_list(C) 
  procedure process_class(X) 
  begin 
    if (not_already_processed(X)) 
    then 
      for each Y in ParentClassNames(X) loop 
        process_class(Y); 
      end loop; 
      C.parent_list := C.parent_list + X; 
      mark_as_processed(X); 
    end if; 
  end; 
begin 
  C.parent_list := ∅; 
  process_class(C); 
end;  

This algorithm that traverses the graph should be run for each class only once. Without it, the 
graph should be traversed in similar manner during every operation with the object instance. 
Advantages of the SQL generation speed-up exceed disadvantages of memory consumption overhead. 
Really, we need o(|pred*(C)|) extra space to maintain the predecessors list. Because |pred*(C)| <= |CCCC|. 
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Wee need o(|CCCC|2) of space and time to build and hold this information in worse case, when inheritance 
hierarchy degenerates to linear list. In the average, when the inheritance graph is close to the balanced 
tree, we can estimate time and space overhead as proportional to o(|CCCC|log(|CCCC|)). 

3.4.2 Queries returning set of instances 

The simplest case belonging to this category is the request to retrieve all identifications of the 
given class C. Such query can be expressed in SQL as follows.  

SELECT PrimaryKey(C)  
FROM From(C)  
WHERE Where(C) 

Generally, only specific sub-set of all instances fulfilling some condition is needed. To express 
object selection in SQL, query must be constructed in form 

SELECT PrimaryKey(C)  
FROM FullFrom(C)  
WHERE FullWhere(C) AND Translate(C,ϕ) 

where: 

i. Function FullFrom(C) returns comma-separated list of all tables attached to direct and indirect 
predecessors. Algorithm takes advantage of the linear list of predecessors to eliminate the 
recursion. 

function FullFrom(C) return string 
begin 
  result := ‘’; separator := ‘’; 
  for each X in C.parent_list loop 
    result := result + separator + From(X);  
    separator := ‘,’; 
  end loop; 
  return result; 
end; 

ii. Function FullWhere(C) returns conjunction of elementary joins. Each elementary join binds 
primary key of class C with primary key of one predecessor as shows following code. 

function FullWhere(C) return string 
begin 
  result := ‘’; separator := ‘’; 
  for each X in C.parent_list loop 
    if X<>C then 
      result := 
        result + separator 
        + From(X) + ‘.’ + PrimaryKey(X) + ‘=’ + From(C) + ‘.’ + PrimaryKey(C); 
      separator := ‘ and ‘ 
    end if; 
  end loop;  
  return result; 
end;  

Joining all needed tables together in this manner, i.e. every table directly with the one attached 
to the class C, can produce more optimizable SQL statements than its equivalent, which joins table 
attached to given class with the one attached to its direct predecessors. In proposed variant the 
structure of inheritance graph need not be taken into account. Moreover, some tables can be easily cut 
out from the statement, if queries are optimised according to chapter 3.3.3. 

iii. Function Translate(C,ϕ) translates predicates from object algebra syntax to the SQL syntax.  
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There exist two specific groups of predicates in the object algebra. All classes X ∈ CCCC belong to 
first of them. The SQL predicate Translate(C,X) in form 

(PrimaryKey(C)) IN (SELECT PrimaryKey(X) FROM From(X)) 

retrieves only objects belonging to the given class (and all its descendants) and filters out all other 
instances. 

The set OOOO of all instances form then the second specific group of predicates. The expression 
Translate(C,o) where o ∈ OOOO produces an SQL predicate that returns single-element set containing the 
object itself. Its form is 

Merge(‘(‘,PrimaryKey(C),’=’,PrimaryKeyValue(o) ,’)’,’)AND(‘). 

iv. The multi-purpose function Merge(Prefix,List1,SepItems,List2,Posfix,SepGroups) merges two 
equally long lists together. It arranges corresponding items of both lists into pairs separated by 
item separators. Group separators then interleave individual groups. The result is then put 
between given prefix and postfix. 

function Merge(Prefix,List1,SepItems,List2,Posfix,SepGroups) return string 
begin 
  result := Prefix; separator := ‘’; 
  while (lists are not empty) loop 
    item1 := first item of List1; 
    List1 := rest of List1; 
    item2 := first item of List2; 
    List2 := rest of List2; 
    result := result + separator + item1 + SepItems + item2; 
    separator := SepGroups; 
  end loop; 
  result := result + PostFix; 
  return result; 
end; 

According to this implementation of Merge function, Translate(C,o) generates an SQL fragment 

(pk1=value1)AND(pk2=value2)AND... AND(pkk=valuek) 

3.4.3 Queries returning complete instance 

Most statements in the application retrieve only object identifications. But at the latest in the 
moment the application wants to access data in the instance, the instance must be retrieved completely 
from the database including all attributes. SQL statement is similar to statement for object selection. 
Instead of columns, forming primary key, all columns are selected. Modifications lead to statement in 
form 

SELECT FullSelect(C)  
FROM FullFrom(C)  
WHERE FullWhere(C) 
       AND Merge(‘(‘,PrimaryKey(C),’=’,PrimaryKeyValue(o) ,’)’,’) AND (‘) 

where: 

i. Function FullSelect(C) returns comma-separated list of all columns from all tables attached to 
direct and indirect predecessors. Each column qualified by table name. It can be pre-computed 
by following pseudo-code. 
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function FullSelect(C) return string 
begin 
  result := ‘’; separator := ‘’; 
  for each X in C.parent_list loop 
    for each Y in Select(X) loop 
      result := result + separator + From(X) + ’.’ + Y; 
      separator := ‘,’; 
    end loop 
  end loop; 
  return result; 
end; 

3.4.4 Queries returning associated objects 

Finding of associated objects implements left(R) and right(R) operators from object algebra in 
SQL. Generation of SQL statements depends on fact, that associations are strictly typed. Each 
association “knows” what exactly classes it associates, for example workers and projects. Information 
about associated objects is usually stored in some relational table in form of pairs of foreign keys. 
Among this type of associations, some associations can be computed from more than one table, as in 
case of chained associations. Pairs of associated object keys are obtained using SELECT statement 
involving more tables in this case. Assume that each association R ∈ RRRR can describe itself by 
following set of functions. 

1. lClassName(R) 
rClassName(R) .................. Names of associated classes  

2. lPrimaryKey(R) 
rPrimaryKey(R) ................. Names of columns forming foreign keys of associated classes  

3. From(R) ............................. Name(s) of table(s) to be used to retrieve associated data. Value R’ for 
R ∈ RRRR, comma-separated list of tables for chained association etc. 

4. Where(R)............................ Join condition joining tables. Empty for regular associations. 

Because tables for associations are constructed, we can derive names of foreign key columns 
from names of primary key columns of corresponding class. To differentiate left-side foreign key from 
right-side one, we can add prefix “L_” to the first and “R_” to the second. Typically, the association 
holding table would have two columns L_OID and R_OID. 

Based on the assumption, we can consider following SQL statements producing set of 
associated object pairs: 

SELECT DISTINCT lPrimaryKey(R), rPrimaryKey(R) 
FROM From(R)  
WHERE Where(R) 

From its format follow translation of both left(R), respectively right(R) operators in form 

SELECT DISTINCT lPrimaryKey(R)  
FROM From(R)  
WHERE Where(R) 

respectively 

SELECT DISTINCT rPrimaryKey(R)  
FROM From(R)  
WHERE Where(R) 

We can derive more complex associations from simple ones by modifying information that 
return above-introduced functions that describe it. Different modifications lead to different results. 
Each association operation defined in 3.2.5 can be achieved by appropriate modification. 
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3.4.4.1 Reversed Associations in SQL 

Deriving reversed association from original, non-reversed one is simple. This operation only 
needs to swap left and right side of the association. Thus 

lClassName(-R) := rClassName(R) 

rClassName(-R) := lClassName(R) 

lPrimaryKey(-R) := rPrimaryKey(R) 

rPrimaryKey(-R) := lPrimaryKey(R) 

Other properties of association remain intact. 

3.4.4.2 Natural Associations in SQL 

Associated pairs are not explicitly stored in the database, but computed from the information 
provided by associated classes.  

lClassName(Cl⊗Cr) := ClassName(Cl) 

rClassName(Cl⊗Cr) := ClassName(Cr) 

lPrimaryKey(Cl⊗Cr) := PrimaryKey(Cl) 

rPrimaryKey(Cl⊗Cr) := PrimaryKey(Cr) 

From(Cl⊗Cr) := From(Cl),From(Cr) 

Where(Cl⊗Cr) := Merge(‘(‘,PrimaryKey(Cl),’=’,PrimaryKeyValue(Cr) ,’)’,’) AND (‘) 

3.4.4.3 Restricted Associations in SQL 

Left restriction ϕ*R, respectively right restriction R*ϕ of the association produces 
sub-association of R as described in 3.2.5. This restriction keeps only such pairs of objects that fulfil 
the given condition. Needed modifications for the left restriction (right one is symmetrical) are 

From(ϕ*R) := FromAll(lClassName(R)), From(R) 

Where(ϕ*R) := WhereAll(lClassName(R)) 
 AND Merge( 
  ‘(‘,PrimaryKey(lClassName(R)),’=’,lPrimaryKey(R),‘)‘,’)AND(’ 
  ) 
 AND Where(R) 

Left restriction o*R can be constructed as a special case of restricted association in more 
efficient manner. Only Where(o*R) needs to be modified according to formula 

Where(o*R) := Merge(‘(‘,lPrimaryKey(R),’=’,PrimaryKeyValue(o),‘)‘,’)AND(’) 
 AND Where(R) 

Left restriction C*R, in addition to modified value of function Where(R), changes also type of 
left side of the association. From(R) need not to be modified. 

Where(C*R) := (lPrimaryKey(R)) IN (SELECT PrimaryKey(C) FROM From(C)) 

lClassName(C*R):= ClassName(C) 

3.4.4.4 Association Chaining in SQL 

Last supported object algebra operation chains two associations R1 and R2 together. Resulting 
chained association is in general described by following characteristics. 

lClassName(R1*R2) := lClassName(R1) 
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rClassName(R1*R2) := rClassName(R2) 

lPrimaryKey(R1*R2) := lPrimaryKey(R1) 

rPrimaryKey(R1*R2) := rPrimaryKey(R2) 

From(R1*R2) := From(R1), From(R2) 

Where(R1*R2) := Where(R1) 
 AND Merge(‘(‘,rPrimaryKey(R1),’=’,lPrimaryKey(R2),‘)‘,’)AND(’) 
 AND Where(R2) 

3.4.4.5 Aliases in Generated SQL code 

Translation of object algebra queries into the SQL language is slightly more difficult than above 
described statements. This fact was omitted in presented statements to simplify its notation. The 
difficulties are caused by the possibility of multiple independent occurrences of some tables in the 
translated query. Chaining of two identical associations, or associations based on the same table will, 
without caution, produce wrong statement. Let suppose chained association 

-Project_Programmer * Project_Programmer 

that returns couples of co-programmers on some common project (see Figure 3.2-2). As described 
above, the association would be translated to SQL statement 

SELECT DISTINCT rPrimaryKey(Project_Programmer), rPrimaryKey(Project_Programmer) 
FROM From(Project_Programmer), From(Project_Programmer)  
WHERE rPrimaryKey(Project_Programmer)=rPrimaryKey(Project_Programmer) 

In pure SQL, the statement would have form 

SELECT DISTINCT Project_Programmer.R_OID, Project_Programmer.R_OID 
FROM Project_Programmer, Project_Programmer  
WHERE Project_Programmer.L_OID=Project_Programmer.L_OID 

which is apparently wrong. The correct statement needs to distinguish both occurrences of the table 
Project_Programmer. To achieve this goal, we need to produce statement in form similar to 

SELECT DISTINCT R$_1.R_OID, R$_2.R_OID 
FROM Project_Programmer AS R$_1, Project_Programmer AS R$_2  
WHERE R$_1.L_OID= R$_2.L_OID 

To adapt the SQL statement, tables should have defined temporary aliases. These aliases then 
should be used in translated queries instead of original table names. One of possibilities of excluding 
duplicities in aliases is to base the alias of the table on the order of appearance of the table name in the 
association as shown above. Aliases of tables that store associations R ∉ RRRR are generated in format 
“R$_n”. Table attached to class C ∉ CCCC should have alias in format “T$_n_m” with two indexes for 
better maintenance. First index is common to all tables from AllFrom(C) list, the second one express 
order in that list. 

Thanks to that assigning of aliases, 

From(ϕProgrammer * -Project_Programmer * Project_Leader * ϕLeader) 

would look like 

Person AS T$_1_1, 
Programmer AS T$_1_2, 
Project_Programmer AS T$_2, 
Project_Leader AS T$_3, 
Person AS T$_4_1, 
Programmer AS T$_4_2, 
Leader AS T$_4_3 
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instead of 

Person, 
Programmer, 
Project_Programmer, 
Project_Leader, 
Person, 
Programmer, 
Leader 

3.4.5 Actualisation Of The Database 

Relational algebra describes only data retrieval from the database and doesn’t cover statements 
that manipulate data in the database. Generation of those SQL statements is described here. We need 
generate five different types of such statements – object insertion, update and deletion for individual 
classes and also insertion into and deletion from associations.  

3.4.5.1 Object Insertion 

With respect to database schema mapping is the insert split to multiple steps. Each step 
manipulates with member attributes of one class and modifies only its attached table. Class by class 
data insertion procedure processes classes from pred*(C) set one by one in order from predecessors to 
successors. The order of class processing is important due to foreign key references between attached 
tables.  

procedure InsertInstance(C,o) 
begin 
  for each X in C.parent_list loop 
    InsertFragment(X,o); 
  end loop; 
end; 

Each partial insert builds and executes SQL statement in form 

INSERT INTO From(X)  
VALUES (AddPrefix(Select(X),’:’)) 

Function AddPrefix simply adds given prefix, at this time a colon, in front of each element of 
the list. Adding colon to the name of the column makes a placeholder – an SQL parameter that is later 
bound to the correct value of the member attribute. For more detailed description of this process see 
chapter 4.14. 

3.4.5.2 Object Actualisation  

The actualisation of data works similar. Tables attached to individual classes are updated one by 
one. The order of actualisation is not critical, but we keep it the same as in previous case.  

procedure UpdateInstance(C,o) 
begin 
  for each X in C.parent_list loop 
    UpdateFragment(X,o); 
  end loop; 
end; 

Each update is done by SQL statement 

UPDATE From(X) SET 
  Merge(‘’,Select(X),’=’,AddPrefix(Select(X),’:’) ,’’,’,’)  
WHERE Merge(‘(’,PrimaryKey(X),’=’, PrimaryKeyValue(o),’)’,’)AND(’) 
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3.4.5.3 Object Deletion 

The deletion of particular instance can be accomplished by removing corresponding row from 
the table attached to the root of the inheritance hierarchy. The rest of work completes the relational 
database, assuming that there are defined foreign keys on all descendant tables. Needed SQL statement 
then has a form 

DELETE FROM From(RootClassName(C)) 
WHERE Merge(‘(’,PrimaryKey(RootClassName(C)),’=’, PrimaryKeyValue(o),’)’,’)AND(’) 

The root class name is the first one from the list of all parent classes. 

3.4.5.4 Associated Pair Manipulation 

If it is possible to modify the content of the association, i.e. it is one of associations defined in 
the object database schema or its reversed variants, the SQL statement that inserts new item into, 
respectively deletes one item from the table can be composed in form 

INSERT INTO From(R) 
VALUES ( PrimaryKeyValue(o1) , PrimaryKeyValue(o2) ) 

respecively 

DELETE FROM From(R) 
WHERE Merge(‘(’,lPrimaryKey(R),’=’,PrimaryKeyValue(o1),’)’,’)AND(’) 
      AND Merge(‘(‘,rPrimaryKey(R),’=’,PrimaryKeyValue(o2) ,’)’,’)AND(‘) 

This implementation can differ for associations with other than many-to-many cardinality. 
Associations with less cardinality can be imbedded directly into table attached to one of associated 
classes instead of forming additional table. Associations with one-to-many cardinality add needed 
columns forming foreign key to the table attached to the right class. In this case we need UPDATE 
statements instead of INSERT and DELETE. The statement 

UPDATE From(R) SET 
  Merge(‘’,lPrimaryKey(R),’=’,PrimaryKeyValue(o1),’:’) ,’’,’,’)  
WHERE Merge(‘(’,rPrimaryKey(X),’=’, PrimaryKeyValue(o1),’)’,’)AND(’) 

associates the object instance on the left side with the one on the right side. Deletion of the association 
is similar, only values of left primary key are replaced by NULL values. 



 37

4 Library Design 

The goal of this chapter is to describe the POLiTe3 library that adopts the object algebra. This 
library provides transparent object persistency built on relational database written in C++ language. 
The structure of the library, represented on following figure is based on requirements described in 2.4 
and on features provided by object algebra introduced in 3.2. 

 
Figure 3.4-1 The internal structure of the library 

This chapter defines the object model of the library. Described object model specifies the set of 
supported operations and its semantics.  

The strict interpretation of object transparency should mean that the programmer doesn’t 
recognise the fact that its legacy application stops to run as usual C++ application and start to use 
object persistency. Achievement of this goal in all its aspects is not possible due to many differences 
in the programming techniques used in database applications on one side and in object–oriented 
programming. Among advantages we can mention the ability of querying objects according its inner 
values as well as simply manipulate huge amount of data. In contrary, the application is expected to 
restrict number of allowed constructs and also to run more slowly with limited set of allowed data 
structures. This chapter describes such differences, and suggests solutions, which minimise impacts of 
using the object persistency on one side and allow utilising of advanced features of the relational 
database servers. 

                                                      
3 Persistent Object Library Test 
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4.1 Supported types 

4.1.1 Persistent capable classes 

The syntax and semantics of persistent types is taken from the C++ language. The library 
manages C++ classes that implement the Persistent Object Interface. As described in 4.2, there is a 
family of classes derived directly or indirectly from the base class named Object in the proposed 
library. There are, however, some restrictions on the complexity of objects. Each of persistent classes 
can have arbitrary number of direct predecessor, but no more than one of those predefined. The count 
of direct successors of class is also not limited. Though there are no explicit limits on the maximum 
depth of the hierarchy tree, the technical limitations of used relational database can restrict it4. Object 
management algorithms used in the library (see chapter 4.9) limits its usage only for dynamically 
allocated instances.  

4.1.2 Atomic attributes 

Allowed atomic member attributes of persistent classes are all attributes declared as 
non-structured C++ type. The library should handle attributes of those atomic types, which 
can be stored in the column of the database table.  
• All variants of type int and their sub-types (short int, int, unsigned int, long int, bool etc.). 

• Floating-point numeric types (float and double). 

• All variants of type char (char and unsigned char). 

• String types char[n] and char* (zero terminated string). Unfortunately, the maximum length of 
CHAR and VARIANT CHAR data types in the databases are limited and the maximum allowed 
length depends on the used database. This restriction must be followed also by the application. 

4.1.3 Structured attributes 

It is possible to create persistent classes containing structured attributes, considering the 
following rules of type constructing are followed: 

• Structures containing members of supported types are supported. 

• Arrays of supported types are theoretically supported, but not recommended5. 

The persistent object that directly or indirectly contains another persistent object is not 
supported. This situation must be solved either by an association or by a reference. 

4.1.4 Pointers 

The library cannot handle object attributes declared as pointer to other variables. This restriction 
is forced by the fact, that pointers becomes invalid once the object is stored to the database and 
retrieved later by different process. Instead of usual pointers, the library introduces references and 
associations that can be used instead. Detailed description of those concepts can be found below in 
chapters 4.3 and 4.13. 

                                                      
4 For example count of tables allowed in one SQL SELECT statement can be limited. 
5 Due to limitation of relational (SQL-92 Entry level compliant) databases, where all tables must 

be in 1-st normal form, all structured types must be mapped to the flat database table. Each element of 
the array must be then mapped to one column. Thus, creating of two associated classes is preferred 
over the class, which contains an inner array. 
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4.1.5 Methods 

The library doesn’t handle the code of object methods. The methods survive the periods of time 
between runs in the code of the C++ program. The persistency of objects means here the persistency of 
data, not persistency of method’s code. We don’t want to store the code in the database. Reasons for 
that choice are: 

• The storage of methods on the server side is too much dependent on the used RDBMS. Changing 
the database would mean to completely rewrite the code of methods in the whole application.  

• Though the latest versions of many relational databases allow access from the database engine to 
the code written as shared library, the code is executed on the server side. The load of applications 
cannot be balanced between tiers of the application. 

• Client application C++ code cannot be stored in the database, then loaded into client process 
memory and executed.  

4.2 Persistent classes 

The hierarchy of persistent classes comes from needs of the object algebra and its translation 
described in chapter 3.3. Object algebra works with object database model and maps it to relational 
database. The library takes into account that real applications would need to manipulate also with 
legacy relational tables and even with data aggregated from the database using general SELECT 
statement. 

Those categories of data manipulation differ in many details. Therefore, persistent classes can 
be in the application derived from one of four generic parents that implement needed Persistent Object 
Interface 

abstract class Object; 
abstract class ImmutableObject : public Object; 
abstract class DatabaseObject : public ImmutableObject; 
abstract class PersistentObject : public DatabaseObject; 

defined in the library. 

On OID based objects derived from class PersistentObject support multiple inheritance and can 
be fully synchronised with the database. 

Synchronising must be possible also for descendants of DatabaseObject class. This 
PersistentObject predecessor implements manipulation with rows of relational tables. It takes into 
account that tables are not derived one from another, but can have arbitrary primary keys with more 
than one column. 

Data from the database can be available also in form of non-updateable view or trough arbitrary 
SELECT statement. As an example can serve the SQL SELECT statement 

SELECT DISTINCT P.Title, COUNT(PP.R_OID) AS NrOfSolvers 
FROM Project P, Project_Programmer PP 
WHERE Project_Programmer.L_OID=Project.OID 
GROUP BY P.Title 

that provides number of programmers involved in particular project. In this case produced data can be 
read from the database, but cannot be changed. More precisely the changed data cannot be stored back 
in the database. Class ImmutableObject from which the PersistentObject class is derived suppose that 
the view or SELECT statement produces unique rows. Owing to that assumption instances of 
ImmutableObject descendants can be repeatedly read from the view or SELECT statement using 
correct set of columns as primary key. The fact that those instances are identifiable allows them to be 
associated with other instances or referenced from them. Upon the SELECT statement above we can 
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build new class Statistics with two member-attributes Title and NrOfSolvers. The altered database 
schema including built-in abstract classes will then look as follows. 

 
Figure 4.2-1 Object model with ImmutableObject descendant 

In the most general case the view or SELECT statement can return non-unique set of rows. 
Particular row then cannot be identified and re-loaded from the database at all. Manipulation with such 
type of data provides the Object class, predecessor of all three other classes. 

Differences are shown in following table. 

 
Feature Object Immutable 

Object 
Database 
Object 

Persistent 
Object 

Data source Any SELECT 
statement. 

Identifiable 
rows that can be 
repeatedly 
fetched. 

Identifiable rows 
from table or 
updateable view.  

Specially 
constructed tables 
with artificial 
keys 

Query supported ���� ���� ���� ���� 

Identifiable instances � ���� ���� ���� 

Update supported � � ���� ���� 

Inheritance supported � � � ���� 

4.3 Object references 

The operational memory is in most cases much smaller than the capacity of the database. On the 
other hand the data stored in the database need not to be in the memory during the whole application 
run-time. Because the application shouldn’t be worry about location of data, we need mechanism 
allowing access to the data regardless the location. We have chosen solution based on indirect access 
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to dynamically allocated persistent objects via specially designed object references. Object reference is 
the abstraction of the object address. It identifies the persistent instance not by address in the memory, 
but by values of their primary key columns and thus is independent on the fact, if the transient copy of 
the object is stored in the local client memory or not. 

Corresponding reference type is automatically derived from common predecessor RefBase for 
each class C starting with the Object class using template  

template <class C> class Ref : public RefBase 
Those references play the role very similar to role of regular C++ pointers. With respect to this 

similarity object references overloaded both operators of dereference 

C &Ref<C>::operator*()  

and 

C *Ref<C>::operator->() 
Both operators, together with overloaded operator of address acquisition 

class RefBase Object::operator&() const 
on Object class hide object persistency and possible absence of object instance in the memory. As in 
the case of standard pointers, the database pointers are comparable. Due to not supported arrays of 
persistent objects, only both basic operators of equality and inequality 

bool operator RefBase::==(const RefBase &) const 
bool operator RefBase::!=(const RefBase &) const 

have to be defined while other comparisons as “less or equal to“, “greater than“ etc. don’t. 
Assignments are allowed though copy constructor and copy operator 

Ref<C>::Ref(const RefBase & const) 
and assignment operator 

Ref<C> &Ref<C>::operator=(const RefBase & const) 
The empty constant reference DBNULL of the Ref<Object> class that points to none object 

must be defined inside the library. Its role is the same as the role of NULL pointer in the C++ 
language. Hierarchy of references corresponding to Figure 4.2-1 is shown on following figure. 

 
Figure 4.3-1 Object reference Class Diagram 
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4.4 Persistent class prototypes 

The translation of object algebra to SQL, as described in chapter 3.4, is based on the knowledge 
of internal structure of classes and their mappings. To successfully generate SQL statements we need 
to know name of attached table, names of columns in it and so on. Apart from other things each class 
must also “know” all its direct predecessors. 

The application must have this information at disposal at any time, even if no instance 
of particular class exists. To make needed information available, the library introduces 
concept of prototype classes and prototype instances. 

For each class C defined in the application, starting with the class Object, the library 
creates prototype template class 

template <class C> class Proto : public ProtoBase; 
that implements the Prototype Interface. The application must declare exactly one global static 
instance of that prototype class. Prototype instances are defined even for abstract classes. They are 
named by name of the class itself with the suffix “_class“. The adherence of this naming convention 
simplifies work with them and makes program code more readable. There are four prototypes defined 
inside the library: 

class Proto<Object> Object_class 
class Proto<ImmutableObject> ImmutableObject_class 
class Proto<PersistentObject> PersistentObject_class 

and 

class Proto<DatabaseObject> DatabaseObject_class 

Prototype instances reproduce the object model, respectively the (CCCC,isa) inheritance 
graph in the application memory. Besides this graph, they form an associative array of 
prototypes accessible through the class register instance Class, defined as 

class ClassRegister Class 

Thanks to operator 
class ProtoBase *ClassRegister::operator[](const char*) const 

the associative array can be indexed by the class name. Expression Class[”Leader”] then looks 
through the object model and returns address of Leader_class prototype. 

As (CCCC,isa) specialisation graph forms (not total) ordering on set CCCC, the prototypes can be ordered 
using complete set of comparison operators. 

bool *ProtoBase::operator==(const class ProtoBase &) const  
bool *ProtoBase::operator!=(const class ProtoBase &) const  
bool *ProtoBase::operator<(const class ProtoBase &) const  
bool *ProtoBase::operator<=(const class ProtoBase &) const  
bool *ProtoBase::operator>=(const class ProtoBase &) const  
bool *ProtoBase::operator>(const class ProtoBase &) const  

It holds that Class[“X”]<=Class[“Y”] ⇔ X isa* Y. Other operators are self-explanatory. One 
part of Prototype Interface provides also methods corresponding with those described in 3.4. Methods 

virtual const char *ProtoBase::RootClassName()  
virtual const char *ProtoBase::ClassName()  
virtual const char *ProtoBase::ParentClassNames() 
virtual const char *ProtoBase::Select() 
virtual const char *ProtoBase::Into() 
virtual const char *ProtoBase::From() 
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virtual const char *ProtoBase::Where() 
virtual const char *ProtoBase::GroupBy() 
virtual const char *ProtoBase::Having() 
virtual const char *ProtoBase::PrimaryKey() 

describe the class itself, meanwhile methods 

virtual class ProtoBase *ProtoBase::RootPrototype() 
virtual int ProtoBase::ParentPrototypeCount() 
virtual class ProtoBase *ProtoBase::ParentPrototype(const int) 

allow traversing the inheritance graph.  

Next part of Prototype Interface combines information about own class with information about all 
predecessors and produce full information about particular class through set of additional methods 

virtual const char *ProtoBase::FullParentClassNames()  
virtual const char *ProtoBase::FullSelect() 
virtual const char *ProtoBase::FullFrom() 
virtual const char *ProtoBase::FullWhere() 
virtual int ProtoBase::FullParentPrototypeCount() 

and 
virtual class ProtoBase *ProtoBase::FullParentPrototype(const int) 

Every instance of persistent object and every reference to persistent object implement the 
method 

virtual class ProtoBase *RefObj::Prototype() const 
that provides the address of instance prototype, respectively referenced object prototype’s 

address and must be correctly redefined on every class derived directly or indirectly on from class 
Object. Section of prototype hierarchy corresponding to the class definition on the Figure 4.2-1 is 
shown on Figure 4.4-1. Note that the prototype Statistics_class has no parent. The inheritance graph 
starts with the PersistentObject class. All other classes are self-standing nodes. 

 

 

 
Figure 4.4-1 Object prototype hierarchy 
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4.5 Object Lifetimes 

The lifetime of an object determines the way of memory allocation for the object instances. 
Library utilises both transient and persistent instances of objects. 

Transient instance of the object is that one, of which lifetime doesn’t exceed the lifetime of the 
running process that created them. To this category belongs all classes defined in the library and 
application except those derived from Object class. The transient object instances can be used as usual 
without limitation. In contrary, persistent instances can be allocated only dynamically on the heap. 
Statically allocated persistent objects are not supported. Dynamic allocation, together with database 
pointers allows the library to take over the memory management of all persistent objects. 

Descendants of DatabaseObject class can be really persistent. Their instances can be stored in 
the database and updated synchronously with changes in memory. We distinguish four basic states of 
persistent instances, as shown on Figure 4.5-1. 

State A: Each instance of persistent class is firstly created by the application as a standard 
transient instance. The data inside the instance are not stored in the database at this time. Instances in 
this phase of the lifecycle are irrecoverably destroyed at the end of a program execution. This state 
allows the application to fill-in all attributes of the instance in the memory before the instance 
becomes persistent and thus without any delay. It is also possible to intentionally create instances, 
which never become persistent in the application.  

State B: At this moment the data are stored primarily in the database and the existing object 
instance in the operating memory is considered a cashed copy of the instance. This copy can be 
removed from the memory without destroying the original stored in the database. 

State C: This state represents the persistent object stored in the database without a copy of its 
data in the application memory. In this state the instance survives the periods of the application 
inactivity. 

State D: In the last described state can be found instances having local copy located and locked 
in the memory. Until unlocking, the instance is located at the fixed memory address and the 
application can access the object using standard pointers bypassing object reference mechanism. The 
object can be locked in memory more times concurrently. All locks must be unlocked before instance 
switches to state B. 

Transitions between states implement a group of methods defined on Object, ProtoBase and 
RefBase classes. Besides above-mentioned operators of deference defined on Ref<C> class to this 
group belongs also method 

virtual class Object *ProtoBase::New() const 

that creates appropriate instance according the prototype on which is invoked. It is also possible to use 
standard new operator with the same result. The rest of transitions and manipulation with object 
instances manage interface methods defined on class RefObj, the common predecessor of both Object 
and RefBase classes. 

class RefBase RefObj::BePersistent() 
bool RefObj::Refresh() 
bool RefObj::Free() 
bool RefObj::Delete() 
bool RefObj::Update() 
class Object *RefObj::MemoryLock() 
bool RefObj::MemoryUnlock() 
unsigned int RefObj::MemoryLocked() 

and 

bool RefObj::RemoveAllMemoryLocks() 
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Method BePersistent inserts object into the database and switch it to the state B. The method 
Refresh simply re-reads data from the database and refreshes the state of the copy located in the 
application memory. Method Free de-allocates the memory copy of the object preserving the object in 
the database. To remove object completely, the method Delete should be used. Whenever the copy of 
an object instance is to be freed, the system checks the dirty flag to decide whether to update database 
before it, or not. The dirty flag is set by method 

bool RefObj::MarkAsDirty() 
and checked by method 

bool RefObj::IsDirty() 
The former of them should be used in every access method of object that changes the instance. 

The system reset the flag automatically after synchronising object with the database either using 
Update or Refresh method. The object can be locked at the current position in the memory using the 
MemoryLock method. This method provides memory pointer to the object that can be used until the 
object is unlocked by the MemoryUnlock method. It is possible to lock object more times 
simultaneously. The object is not released from the memory until all locks are unlocked. The number 
of locks can be checked at any moment by the method MemoryLocked. Locks can be removed from 
the object instance one by one, or they can be removed at once by the method 
RemoveAllMemoryLocks. 

The current state of the object can be checked by set of methods, that besides already mentioned 
method 

unsigned int RefObj::MemoryLocked() 
contains methods 

bool RefObj::IsTransient() 
bool RefObj::IsPersistent() 
class Object *RefObj::IsInMemory() 

States of instances can be determined according to result of those methods as shown in 
following table. 

 

State IsTransient() IsPersistent() IsInMemory() MemoryLocked()

A true false   

B false true <> NULL 0 

C false true NULL  

D false true <> NULL > 0 

 

The complete state transition diagram for DatabaseObject and PersistentObject descendants is 
shown below. 
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Figure 4.5-1 State diagram of DatabaseObject and PersistentObject descendants 

Common interface of object instances and their references brings many advantages. To 
accomplish some operations, the instance need not even be loaded in the memory. For example the 
reference declared as 
Ref<Programmer> refProgrammer; 
allows deleting of the object by invocation of the statement 
refProgrammer.Delete(); 
with the same effect as statement 
refProgrammer->Delete(); 

In the application defined direct descendants of Object class cannot make persistent instances. 
They are designed to represent resulting rows of arbitrary SELECT statement. Data inside their 
instances cannot be synchronised with the database. Data inside them can be computed or aggregated 
form arbitrary number of tables. Though Object successors share the same interface for state 
transition, their state diagram is much simplified. The state diagram (see Figure 4.5-2) corresponds to 
diagram of usual transient object and has only one state. Differences flow from change in the 
BePersistent method. 
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Figure 4.5-2 State diagram of Object descendants 

Instances of objects derived from ImmutableObject class strictly distinguish between instances 
created by the application and those loaded from the database. Instances cannot be stored nor deleted 
from the database. 

 
Figure 4.5-3 State diagram of ImmutableObject descendants 

4.6 Database 

The application in C++, running upon POLiTe library may communicate with one or more 
logical databases. Each of them represents one physical database. One of the basic features is the 
independence of the application on the RDBMS provider. The application written for one particular 
RDBMS family should be easily portable to another one. Thus, the library must hide the differences in 
the low-level communication protocols used for the client-server communication as well as differences 
in SQL dialects recognised at the server side. To overcome differences between database systems from 
different providers, the library contains two publicly visible abstract classes 

class Database 
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class Connection 

and additional one – from the outside invisible – class 
class Cursor 

These classes represent the abstraction of the used database. Each logical database is an instance 
of the concrete Database subclass. Existing concrete subclass 

class OracleDatabase : public Database 
implements the Database Interface as needed for RDBMS Oracle. New instances of type 
OracleDatabase are created using constructor 

OracleDatabase::OracleDatabase(const char * = NULL) 
Optional parameter denotes the name of the physical Oracle database according to Oracle 

naming conventions. The name of the database can be supplied later using method 

virtual bool Database::Assign(const char * const = NULL) 
Application can create arbitrary number of concurrent connections to particular database. 

Communication with the database ever goes through one of those connections. As in case of 
databases, individual connections are represented by instances. Common predecessor named 
Connection defines the Database Connection Interface, implemented by subclasses for different 
databases. 

Application connects to the database using method 

virtual class Connection *Database::Connect( 
const char * const username, 
const char * const password 
) 

and disconnects using 

virtual bool *Connection::Disconnect() 
Connections allow also limited dynamic SQL statement execution. The application can send and 

directly execute any DML statement, which needs not any parameter, in any connection. For this 
purpose is defined method 

virtual bool Connection::Sql(const char *const Statement) 
and equivalent operator 

virtual Connection &operator << (const char * const Statement) 

Example 4.6-1 – Databases, connections and dynamic SQL execution 

class OracleDatabase SampleDatabase(""); 
// default oracle database at this machine 
Connection *DbCon; 
DbCon = SampleDatabase.Connect("user_name","password"); 
// connected to the database 
(*DbCon)<<”UPDATE PERSON SET AGE=AGE+1”; 
// all ages are raised by 1 
DbCon->Disconnect(); 
// disconnected from the database 

♦ 

4.7 Multi-user data sharing 

As the objects can temporarily exist in both persistent store (RDBMS) and the operational 
memory (see diagrams in chapter 4.5), problem with keeping all copies of objects consistent arises. 
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Maintaining perfect consistency is especially painful, when programs runs more times in parallel on 
different computers and can communicate only using slow (in comparison to the speed of the 
operational memory) communication medium, as the RDBMS is. The solution is to accept less than 
perfect consistency as the price for better performance. We introduce flexible solution allowing trade 
off overall application performance for better consistency and vice versa. Each consistency model 
specifies set of rules, which are needed to obey by the programs to ensure correct behaviour of the 
shared data storage. If the application violates the given rules, the correctness of the results is not 
guarantied.  

4.7.1 Consistency models 

4.7.1.1 Strict consistency 

Strict consistency is the strictest possible consistency model. This model is based on the 
consistency achieved in single-processor operating system, where all instructions of all processes can 
be easily ordered in time. The strict consistency model can be expressed by the following rule. 

Each operation READ on the shared object returns the value, stored to the object by the most 
recent WRITE operation. 

The definition is natural, but assumes the existence of the absolute global time to define the 
term “most recent WRITE operation”. Uni–processors achieve strict consistency and so many 
programmers automatically assume it. When the object storage is strictly consistent, all writes are 
immediately visible to all processes. 

4.7.1.2 Sequential consistency 

While strict consistency is the ideal model, it is mostly impossible to guarantee it in distributed 
computational environment. Sequential consistency is a slightly weaker model, where the storage 
space satisfies following condition: 

The result of any execution is the same, as if the operations of all processors were executed in 
some sequential order, and the operations of each individual processor appear in this sequence in the 
order specified by its program. 

This definition says, that all processes running in parallel must see the same sequence of 
memory accesses, Moreover, the sequence of instructions from one particular processor must be 
ordered according the order in this process. Fulfilling of those conditions is more easily achievable in 
the client server environment, as the central server can order all incoming requests. 

4.7.1.3 Causal consistency 

The causal consistency model represents further weakening of the sequential consistency model. 
Meanwhile the previous model required the same order of all operations on all computer nodes, the 
causal consistency model requires the same order only for potentially causally related couples of 
operations. If operation B is caused or influenced by the earlier event A, causality requires, that all 
processes see A first, then B. Operations which are not potentially causally related are concurrent and 
can appear on different nodes in different order. 

4.7.1.4 Transactional consistency 

The transactional consistency is naturally achieved by the RDBMS, and thus most important for 
us. This model of consistency is quite different than previously discussed models. 

It is based on the mechanism of transactions. Transaction is the sequence of operations executed 
by one process (by one session in the database terminology), which satisfies four basic conditions 
abbreviated as ACID: atomicity, consistency, isolation or independence and durability. 
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• Atomicity requires, that all operations inside the transaction are executed either all, or none. If some 
of operations fail, the transaction is rolled back and all effects caused by the transaction are 
removed. 

• Consistency assures consistency of data at the end of the transaction, even the consistency of data 
can be violated during the transaction. 

• Independence guaranties that the results of operations of one running transaction are independent 
on other concurrently running transactions. 

• Durability of transactions means that after the committing of the transaction all changes made by it 
becomes permanent and visible to other transactions. The changes should preserve even in case of 
software or hardware failure. 

4.7.2 Transaction model 

The transactional mechanism used by RDBMS cannot and shouldn’t be completely hidden to 
the programmer of the application. The only possibility of its hiding is to permanently use the database 
auto-commit feature, which significantly decrease the application performance. 

Transactional model allows application or thread within the application open more simultaneous 
connections to the same logical or physical database. In case of multiple parallel connections to one 
physical database, the data maintenance should be indistinguishable from the situation when there are 
more independent processes running concurrently on the same database. All three equivalent 
configurations of two connections working concurrently on the same physical database are shown on 
following figure. 

  
Figure 4.7-1 Concurrent connections on one database 

Figure on the left shows two concurrent connections within one application those share the same 
logical database. Middle section shows the same connections with its own logical databases assigned 
to common physical database. Third figure shows two concurrent applications. Proposed transactional 
model assumes that transactions start automatically. At the end of the transaction, application can issue 
one of methods 

virtual bool Connection::Commit(); 
virtual bool Connection::Rollback(); 
virtual bool Connection::Disconnect(); 
virtual bool Connection::Abort(); 

that either commit the transaction or roll it back. The Abort method rolls back running transaction and 
then disconnects the connection from the database. Method Disconnect described in 4.6 commits last 
transaction automatically. 
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Most relational databases allow working in so-called auto-commit mode. When this mode is 
active, transactions are inactive and each statement that change the state of the database is immediately 
committed. This mode can be set for given session through method ### 

virtual bool Connection::Autocommit(bool); 

Example 4.7-1 – Transaction control 

The simple application can connect at the start of process. At the end it can either commit, or 
roll back the transaction according to possible error in the code execution. 
int main() 
{ 
 int error = 0; 
 OracleDatabase SampleDatabase("personal"); 
 DatabaseConnection * DbCon; 
 DbCon = SampleDatabase.Connect("scott","tiger"); 
 /* the code of program that sets error when needed */ 
 if (error) 
  DbCon->Rollback(); 
  DbCon->Disconnect(); 
  // the same as DbCon->Abort() 
 else 
  DbCon->Commit(); 
  // not needed, 
  // Disconnect() commits last running transaction 
  DbCon->Disconnect(); 
 return error; 
} 

♦ 

To commit or to roll back all opened connections on the same logical database, application can 
use methods 

virtual bool Database::Commit(); 
or 

virtual bool Database::Rollback(); 
defined on the Database class. The library model doesn’t support nested transactions, but supports 
savepoints. Savepoints are named marks defined inside the transaction. When necessary, application 
can return the state of data back to one of previously defined savepoints and partially roll back the 
transaction. Two additional methods 

virtual bool Connection::Savepoint(const char * const); 
and 

virtual bool Connection::RollbackToSavepoint(const char * const); 

serve for this purpose. Advantages of savepoints appear in case that some operation that must be done 
fails. It is possible to repeat the operation more times, as in following example. 
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Example 4.7-2 – Savepoints 

// try it five times 
for(int i = 0; i < 5; i++) { 
 DbCon->Savepoint(”sp1”); 
 if (ProcessData()==0) 
  break; 
 // not successfull, return and try it again 
 DbCon->RollbackToSavepoint(”sp1”); 
}; 

♦ 

In spite of standardisation different implementations of RDBMS can differ in details of 
transactional processing. Oracle RDBMS, which was used for pilot implementation, fulfils following 
conditions. 

• The database server uses by default row-level locking rather than table level locking. 

• Server exclusively locks row of data automatically when the session updates it. 

• The lock on the row doesn’t deny other sessions to read the original data stored in the row. 

• Until transaction is committed, the updated data are visible only from the session, which changed 
them. After the commit operation, all locks made by the transaction are released, changes become 
permanent and visible to other sessions. 

4.8 Object Manipulation and Consistency Control 

The object references allow indirect access to persistent objects regardless of its location in the 
memory. In time of their dereferencing, it must be possible to find out if the wanted instance of the 
object is already placed in the memory or not. If the corresponding persistent instance is already in the 
memory, its address can be used. If not, the instance must be loaded from the database. Re-using of 
previously loaded object copies significantly speeds up the application. On the other hand, keeping of 
multiple copies of the same object on more places across the network requires additional overhead to 
preserve data consistency. 

The object instance management inside the library works in the similar way as on-demand 
paging module inside the virtual memory management in the operating system. Different settings of 
object instance management allow trade off the speed of the application for more strictly data 
consistency and vice versa. The more strictly data locking, the more secure multi-user access and the 
slower application. Thus, the programmer should appropriately balance the security needs with the 
program speed accordingly the particular application. Below described data access strategies can be 
defined on three levels. Most general settings on database level can be further redefined on session or 
even on the object level. This approach allows the application to distinguish objects importance case 
by case. 

The concurrent access to the shared data can be set: using combinations of four characteristics – 
updating, waiting, locking and reading strategy. 

4.8.1 Updating strategy 

The update strategy determines the way in which the updated objects are handled. 
Changes can be either propagated immediately to the database or they can be deferred and 
written to the database either explicitly by the programmer using the object’s Update() method 
or by the object instance management when necessary.  

The update strategy can be set to one of enumerated values given by type 
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enum UpdatingStrategy {  
US_Default, 
US_Current, 
US_Inherited, 
US_OnDemand, //default setting 
US_Immediately 
}; 

The required update strategy can be set on different levels by methods 

bool Database::SetUpdatingStrategy(enum UpdatingStrategy) 
bool Connection::SetUpdatingStrategy(enum UpdatingStrategy) 
bool ObjRef::SetUpdatingStrategy(enum UpdatingStrategy) 

and obtained by methods 

enum UpdatingStrategy Database::CurrentUpdatingStrategy() const 
enum UpdatingStrategy Connection::CurrentUpdatingStrategy() const 
enum UpdatingStrategy ObjRef::CurrentUpdatingStrategy() const 

Setting the strategy to US_Default uses default setting (US_OnDemand), hard-coded to the 
object management. Value named US_Current doesn’t change the strategy and so it can serve as 
default value of parameters inside methods. Using of US_Inherited setting has no effect on the 
database level. On other levels it sets the strategy accordingly to the setting of the higher level.  

4.8.2 Locking strategy 

When the required object is loaded from the database into program memory, rows containing 
the object data in the database can be locked either in none, shared or exclusive mode. According to 
those possibilities, allowed values are enumerated by type 

enum LockingStrategy { 
LS_Default, 
LS_Current, 
LS_Inherited, 
LS_None, //default setting 
LS_Shared, 
LS_Exclusive  
}; 

Current settings of locking strategy can be found out and set through following set of methods 

bool Database::SetLockingStrategy(enum LockingStrategy) 
bool Connection::SetLockingStrategy(enum LockingStrategy) 
bool ObjRef::SetLockingStrategy(enum LockingStrategy) 
enum LockingStrategy Database::CurrentLockingStrategy() 
enum LockingStrategy Connection::CurrentLockingStrategy() 
enum LockingStrategy ObjRef::CurrentLockingStrategy() 

4.8.3 Waiting strategy 

Setting of the waiting strategy determines the behaviour of the object management in case the 
object locked in another session should be changed or locked. It is either possible to wait until the 
object becomes unlocked, or throw an exception. The exception can be detected by the application. In 
case the exception is detected, the application can do another work before it re-tries the update. 

By analogy to updating and locking strategies, possible waiting strategy settings are enumerated 
by type 



 54

enum WaitingStrategy {  
WS_Default, 
WS_Current, 
WS_Inherited, 
WS_Wait, //default setting 
WS_Nowait  
}; 

The requested waiting strategy can be set and obtained using access methods 

bool Database::SetWaitingStrategy(enum WaitingStrategy) 
bool Connection::SetWaitingStrategy(enum WaitingStrategy) 
bool ObjRef::SetWaitingStrategy(enum WaitingStrategy) 
enum WaitingStrategy Database::CurrentWaitingStrategy() 
enum WaitingStrategy Connection::CurrentWaitingStrategy() 
enum WaitingStrategy ObjRef::GetWaitingStrategy() 

4.8.4 Reading strategy 

This setting influences behaviour of the object management at the moment the object should be 
accessed by its reference and its copy already exists in the memory. It can be used either cached copy 
or new data can be loaded from the database first. Repeated reading of object from the database can 
noticeably slow down the application. As a compromise, the object management can first compare the 
timestamp of the instance in the database with those remembered during last fetch. Possible reading 
strategy settings are enumerated by type 

enum ReadingStrategy {  
RS_Default, 
RS_Current, 
RS_Inherited, 
RS_Cache, //default setting 
RS_Database,  
RS_Timestamp  
}; 

As usual, changes are handled by access methods 

bool Database::SetReadingStrategy(enum ReadingStrategy) 
bool Connection::SetReadingStrategy(enum ReadingStrategy) 
bool ObjRef::SetReadingStrategy(enum ReadingStrategy) 
enum ReadingStrategy Database::CurrentReadingStrategy() 
enum ReadingStrategy Connection::CurrentReadingStrategy() 
enum ReadingStrategy ObjRef::GetReadingStrategy() 

The optimal choice between RS_Database and RS_Timestamp depends on the frequency of 
object changes. The greater probability of object change, the larger overhead of RS_Timestamp choice 
is. Really, if the object was not changed, only the object’s timestamp must be read from one table in 
the database. If the timestamp differs from the last fetched one, the fetch of complete object must 
follow.  

Some important combinations of setting of above-listed strategies are shown in following table. 

Autocommit Updating 
Strategy 

Locking 
Strategy 

Waiting 
Strategy 

Reading 
Strategy 

Consistency 

Yes US_Immediate LS_None - RS_Database Causal 

No US_Immediate LS_None - RS_Database Transactional 

No US_Immediate LS_None - RS_Timestamp Transactional 
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No US_OnDemand6 LS_None - RS_Database Transactional 

No US_OnDemand LS_None - RS_Timestamp Transactional 

No US_OnDemand LS_None - RS_Cache Default 

Last row of the table corresponds to the default settings. It doesn’t prevent reading out-dated 
data from the object cache, even when there are newer committed version in the database. But in many 
cases it is sufficient and most efficient in terms of speed of the application.  

Flexibility of settings allows finding suitable compromise between the consistency and 
performance. Some object may be volatile, and its changes must be immediately propagated to the 
database and available to other sessions. Another objects may be constant, infrequently changed or 
exclusively maintained by only one process. In this case the overhead caused by consistency checking 
is unnecessary. 

4.9 Object Cache 

The object cache is implemented by class ObjectBuffer with its solitaire instance named 
ObjectCache. The main functionality of this class is to keep track of all object instances loaded 
currently from the database into memory and translate database pointers to memory pointers as fast as 
possible. From the logical point of view the object buffer works as an associative array of memory 
pointers indexed by database pointers. 

Each database pointer contains three components, a definition of strategies for object 
manipulation, a pointer to the database connection and an identification of the object in the database. 
The identification of the object is stored in attribute of class ObjectIdentification type. Because two 
different database connections can see different states of data in the database (changes made by one 
connection can be invisible to other connections until commit), the object buffer works as 
two-dimensional array. One dimension is indexed by the database connection, the second one by the 
object identification itself. 

The object identification consists of the pointer to correct prototype of the persistent capable 
class and the list of values of the primary key. 

Whenever the application dereferences a database pointer, it invokes the method 

Object *ObjectBuffer::GetReferencedObject(const class RefBase &DbPtr); 
that searches for corresponding object. If it finds the registration record, the registered address of the 
object is returned. If not, the new instance of the class represented by the prototype is created using 
method 

C *Proto<C>::New(); 

and then the just created object instance is filled by needed data from the database and registered 
within the buffer. The locking strategy stored in the database pointer is taken into account to decide if 
the loaded object should be locked in the database or not. 

The buffer stores registration records separately according to hash value of primary key values. 
This significantly reduces the amount of information it has to be read during address translation. The 
object buffer represents one of central point in the library implementation. The object buffer provides 
methods that impact default behaviour of the library and manipulates with more objects at the same 
time. 

                                                      
6Supposed that the database runs not in dirty read mode.  
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It is the object buffer from witch all database instances derive its default strategies (Updating, 
Reading, etc.) at time of their creation. Settings can be changed using the same interface as in case of 
databases, connections and pointers.  

bool ObjectBuffer::SetReadingStrategy(enum ReadingStrategy) 
enum ReadingStrategy ObjectBuffer::CurrentReadingStrategy() 
bool ObjectBuffer::SetUpdatingStrategy(enum UpdatingStrategy) 
enum UpdatingStrategy ObjectBuffer::CurrentUpdatingStrategy() 
bool ObjectBuffer::SetWaitingStrategy(enum WaitingStrategy) 
enum WaitingStrategy ObjectBuffer::CurrentWaitingStrategy() 
bool ObjectBuffer::SetLockingStrategy(enum LockingStrategy) 
enum LockingStrategy ObjectBuffer::CurrentLockingStrategy() 
All changed objects currently registered in the memory can be synchronised with the database 

using one of methods 

bool ObjectBuffer::UpdateAll(); 
bool ObjectBuffer::UpdateAll(const class Connection *const DbC); 
bool ObjectBuffer::UpdateAll(const class Database *const DB); 

that differs in amount of processed objects. First of mentioned methods updates all changed objects 
from all databases, the second one processes only objects retrieved from one database and the last one 
updates only objects read through given connection. 

It is also possible to free all objects registered in the buffer. For this purpose are defined 
methods  

bool ObjectBuffer::RemoveAll(); 
bool ObjectBuffer::RemoveAll(const class Connection *const DbC); 
bool ObjectBuffer::RemoveAll(const class Database *const DB); 
Before they are released from the memory, it is possible to unlock them all using methods 

bool ObjectBuffer::RemoveAllMemoryLocks (); 
bool ObjectBuffer::RemoveAllMemoryLocks (const class Connection *const DbC); 
bool ObjectBuffer::RemoveAllMemoryLocks (const class Database *const DB); 
Note that each instance must be unregistered from the memory before its memory image is 

destroyed. To do it the destructor of each persistent capable class must call its inherited method 

bool Object::_Free(); 
It must be called before destructors start to destroy the instance. The method _Free() causes the 

object to be updated to the database if it is necessary and this action cannot be deferred. 

4.10 Exceptions and Exception Handling 

The object library use capabilities of C++ language to handle exceptional states during data 
manipulation. During the execution of the application, some exceptions may appear due to incorrect 
statement executed on the database server, the error in the network communication, incorrect use of 
library services, insufficient amount of resources (memory), etc. All exceptions are derived from the 
common predecessor class named ObjLibException, as it is shown on picture below. 
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Figure 4.10-1 Class diagram of exception hierarchy 

The ObjLibException class includes method 

virtual const char *ObjLibException::Name() 
that returns the name of the caught exception. Programmer can declare try block with exception 
handler capable of handling exception of type ObjLibException or any of its descendants. If any 
operation within the try block raises the exception, the handler is activated. 

Usage of exception handling during connection to the database shows following example.  

Example 4.10-1 – Exception handling 

class OracleDatabase SampleDatabase(""); 
//default oracle database 
DatabaseConnection *DbCon = NULL; 
try { 
 printf("Trying to connect to the database ...\n"); 
 DbCon = SampleDatabase.Connect("user_name","password"); 
} 
catch (ObjLibException &X) { 
 printf("... NOT connected\n"); 
 throw; 
}; 
printf("... connected\n"); 

♦ 

There are seven exception subclasses defined by the library. 

class ObjLibException_NotSupported : public ObjLibException 
This exception can appear whenever the library tries to use any feature, which is not supported 

by the used SQL engine. In case of the prototype implementation based on Oracle service, the 
exception is thrown, whenever the application tries to go backward in the query result. 

class ObjLibException_ConnectionError : public ObjLibException 

The ObjLibException_ConnectionError is thrown, if the library can't communicate with the 
database server through the given connection. The connection can’t be established, was already closed 
by the application or by the server. 

class ObjLibException_SqlError : public ObjLibException 



 58

This exception is thrown, if the database server does not recognise the issued SQL command 
due to either its wrong syntax or semantic error. 

class ObjLibException_DatabaseLock : public ObjLibException 

This exception is thrown, if the specified object can’t be changed in the database because the 
table or the row, representing the object is locked by another connection and the library should not 
wait for its release. 

class ObjLibException_MemoryLock : public ObjLibException 
The library throws memory lock exception, whenever the application demands de-allocate the 

object previously locked in the memory. The object must be unlocked first. 

class ObjLibException_NoMemory : public ObjLibException 

If there is not enough memory to complete requested operation, library generates this exception. 

class ObjLibException_NotFound : public ObjLibException 
Last sub-type of exception appears whenever the application tries to load and access object that 

does not exists in the database. The most probably it was already permanently deleted. 

4.11 Table-level locking and mutual exclusion 

By default, objects are locked in the database as necessary. The object locking protocols are 
driven by the LockingStrategy and WaitingStrategy settings. The rows containing data are locked 
exclusively at latest at the time the session changes them in the database. Until committing of the 
connection, all other sessions will read old data. Any attempt to change the same object from another 
connection will be detected by the server.  

In addition to the object-level locking, the application can try to lock whole table associated 
with given class. For this purpose the application should call the method 

bool Proto<C>::LockTable( 
Connection *, 
enum LockingStrategy = LS_Current, 
enum WaitingStrategy = WS_Current  
) 

defined on the ProtoBase class. It tries to lock the whole table associated with the class C in the 
database. If the method fails and the WS_NoWait strategy was chosen, the method raises an exception 
GenLibException_DatabaseLock. Otherwise the process will wait until all previous locks on the table 
are released. One of applications of table-level locking is implementation of semaphores. Semaphores 
can be then used for mutual exclusion of processes. 

Each semaphore is represented by one of program subclasses. Because locked objects in the 
database can be unlocked only at the end of transaction, each semaphore needs its own database 
connection that can be committed independently on the others. The application can define class 
Semaphore with needed successors. Having such classes and dedicated connection DbConn, we can 
simulate the semaphore in following way: 

Example 4.11-1 – Critical section based on table-level locking 

// ... 
//Try to lock table exclusively. Wait until succeeded. 
Class[”Semaphore”]->LockTable(DbCon,LS_Exclusive,WS_Wait); 
//Begin of critical section  
// ... 
DbCon->Commit(); 
//End of critical section 
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♦ 

Drawback of this technique is the necessity having one class for each planned semaphore. To 
avoid such requirement, the proposed persistent object library allows another solution of mutual 
exclusion using row-level approach. 

In difference to previous solution each semaphore will need only one instance of persistent class 
Semaphore and one database connection. At the entry of the critical section process simply loads the 
instance from the database through given database connection. When the process leaves the critical 
section, it rolls back the connection and releases the acquired row-level lock. Rolling the transaction 
back also discards the Semaphore instance from the object cache. Semaphores can be identified by its 
unique name in the system.  

When the total count of needed semaphores together with their names are not known in 
advance, the program can create new and destroy obsolete semaphores at run-time. During the time 
when one process creates new semaphore instance with the given name it must be guarantied that no 
other process will try to create the same one. Let imagine two identical programs running in parallel 
on different computers. 
Process No. 1 Process No. 2 
try { try { 
  fetch and lock semaphore ”X”   fetch and lock semaphore ”X” 
} catch(”X” not exists) { } catch(”X” not exists) { 
  create semaphore ”X” /**!**/   create semaphore ”X” /**!**/ 
  fetch and lock semaphore ”X”   fetch and lock semaphore ”X” 
}; }; 
... ... 
unlock semaphore X unlock semaphore X 

In this case both processes fail lock the semaphore X in the database due its inexistence. 
Consecutively both processes start create the semaphore and one of them fails again due to required 
uniqueness of semaphore names. Solution is to use one predefined semaphore and close above shown 
piece of code to critical section. 
Process No. 1 Process No. 2 
try { try { 
  fetch and lock semaphore ”X”   fetch and lock semaphore ”X” 
} catch(”X” not exists) { } catch(”X” not exists) { 
  fetch and lock semaphore ”NewSem”   fetch and lock semaphore ”NewSem” 
  create semaphore ”X” /**!**/   create semaphore ”X” /**!**/ 
  fetch and lock semaphore ”X”   fetch and lock semaphore ”X” 
  unlock semaphore ”NewSem”  unlock semaphore ”NewSem” 
}; }; 
... ... 
unlock semaphore ”X” unlock semaphore ”X” 

The third implementation of semaphores is fully based on processing of unique values in the 
used relational database. Whenever session S2 tries to create row with already existing value in unique 
column but not committed by session S1, the database defer the insertion until already existing value is 
committed or rolled back by first session. If S1 commits the value, S2 fails. Else S2 succeeds. 
Process No. 1 Process No. 2 
create semaphore ”X” create semaphore ”X” 
// ... critical section // ... critical section 
rollback the session rollback the session 

One of processes creates the object and enters critical section while second one will wait until 
the section will be empty.  
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4.12 Querying objects 

The library implements object algebra described in section 3.2. Each predicate of the object 
algebra is represented by one instance of Query class. New instance of the query can be declared and 
initialised using constructor 

Query::Query( 
const char *const Where = NULL, 
const char *const OrderBy = NULL 
); 

When used without parameters, an empty query is created. The empty query doesn’t restrict the 
WHERE condition at all. Its execution returns all instances of the target class. It also doesn’t define 
ordering clause of SELECT statement. There is one empty constant query instance named EQUERY 
predefined in the library. This instance, defined as 

static const Query EQUERY(); 
can be used whenever condition is required and no restriction should be used. The same constructor 
used with one parameter only builds a query containing no ordering definition. The last allowed 
format with two parameters defines also ordering of the resulted set of objects.  

Except EQUERY, there are three additional predefined queries ALL, NONE and EQUERY 
declared as 

static const Query ALL(”1=1”); 
static const Query NONE(”1<>1”); 
static const Query EQUERY(””); 

Both condition and ordering clause of queries can be further modified and read using defined 
access methods 

const char *Where() const; 
bool Where(const char *const Where); 
const char *OrderBy() const; 
bool OrderBy(const char *const OrderBy); 
The language that can be used to express the condition and ordering combines C++ expressions 

together with SQL ones. Restriction to only SQL language causes unnecessary and unwanted 
impedance problem where because the programmer must take into account how the attributes are 
mapped onto table columns. On the other hand, allowing only the C++ syntax reduces significantly 
possibilities of the language. The conditions couldn’t use any of columns or tables that are not mapped 
by the library. The library automatically translates following C++ expressions and operators to SQL: 

1. C++ equivalence operator “==” is translated to SQL operator “=”. 

2. C++ operator “!=” (not equal to) is translated to operator “<>” 

3. C++ operator “!” (logical not) is translated as “ NOT “ 

4. C++ operator “&&” (logical and) is translated as “ AND ” 

5. C++ operator “||” (logical or) is translated as “ OR ” 

6. Expression Class_name::Attribute_name is translated to SQL expression in form 
TABLE_NAME.COLUMN_NAME. 

This translation allows writing C++-like query 
Query Q(”Person::Surname==’Smith’ && !(Driver::LicenseNr==12345”) 
instead of its SQL transcription 
Query Q(”TPERSON.SURNAME=’Smith’ AND NOT(TDRIVER::LICENCE_NR=12345”) 
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that depends on the mapping. But if there is, for example a table LOST_LICENCE that contains a list 
of lost driving licences, the query can use it without limitation. 
Query Q(”Driver::LicenseNr NOT IN (SELECT NR FROM LOST_LICENCE)”) 

A template class Result<C> derived from common predecessor ResultBase is defined for each 
persistent object class C starting with Object class as follows. 

template <class C> class Result : public ResultBase 
Its instances represent query results obtained by query execution of selection operator round 

brackets 

Result<T> * Proto<T>::operator() ( 
const class QueRefProto & const, 
const Connection *const 
) 

defined on appropriate object prototype. The second parameter is needed to define the connection, on 
which the query should be executed. Execution on different connections can result in different results 
due to uncommitted changes in their transactions. 

Abstract class QueRefProto used as first formal parameter is a common predecessor of classes 
Query, ProtoBase, Object and. RefBase. The hierarchy structure is in detail shown on Figure 4.12-1. 

 
Figure 4.12-1 Class diagram of query and result hierarchy 

All QueRefProto successors can be used as condition. 

ProtoBase class represents individual persistent classes. When used as condition, produces 
WHERE fragment 

(RootPrototype()->PrimaryKey()) IN (SELECT PrimaryKey() FROM From()) 

The Object, respectively RefBase classes represent object instance, respectively a reference to object 
instance. Both represent condition 

Prototype()->PrimaryKey() = PrimaryKeyValues() 

inherited from RefObj class. 
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The selection operator returns a pointer to the dynamically created instance of the Result<C> 
class. Query results are based on database cursors. The same way as database cursors, query results 
must be opened before accessing the data, closed at the end of work with them. They can be opened, 
reopened and closed using methods 

bool Result<C>::Open(); 

and 

bool Result<C>::Close(); 
Query execution returns query result already opened for more convenient work. In other aspects 

query results behave similar to arrays of object references. The original idea was to implement a query 
result to look like an ordinal C++ array of objects using method 

class C &Result<C>::operator [](long int i) 
Unfortunately not all databases support random access or two-way fetching from the database 

cursor. It could be still possible to use this approach on such a database, supposing that the index in 
the array will not decrease. Because there is not much difference between arrays of objects and 
pointers in C++, the final approach considers the query result to be an object reference. This approach 
keeps the C++-like style of data manipulation with query results. Most of needed methods are 
inherited by deriving ResultBase class from the RefBase class. To increase the similarity between the 
query results and the C++ style of manipulating arrays, the increment operators 

Result<C> &Result<C>::operator ++(); 
and 

Result<C> &Result<C>::operator +=(const int i); 
are defined. Both operators fetch one, respectively given number of rows from the cursor. If the fetch 
succeeds, it points to next retrieved object instance. If there were not enough rows in the result, the 
query result becomes equal to DBNULL7. 

Example 4.12-1 – Query execution and result processing 

To retrieve all persons older than forty ordered by the name and process all retrieved objects, 
the programmer should write: 
// define the query 
Query q("Age>40", "Name"); 
Result<Person> *r; 
// execute the query 
r = Person_class(q,DbCon); // resp. r = (*Class[”Person”])(q,DbCon); 
// fetch next row from result until all workers are processed 
while (++(*r) != DBNULL) 
{ 
 // process the current element of the query result 
}; 
// close the query result 
r->Close(); 
// destroy the result instance 
delete(r); 

♦ 

As usual in the C++ language, queries can be combined using Boolean operators 

class Query Query::operator &&(const QueRefProto &const Q) const; 

                                                      

7 Object references can be compared to equality and non-equality 
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class Query Query::operator ||(const QueRefProto &const Q) const; 
class Query Query::operator !() const; 

for corresponding operations on them. Programmer can copy queries using copy constructor 

Query::Query(const QueRefProto &const Q); 
and also by assignment operator 

Query &Query::operator =(const QueRefProto &const Q); 

Example 4.12-2 – Query manipulation 

Using those operators and copy constructors, the programmer can write 
Query q1("Name LIKE ’Smith %’"); 
Query q2("Age>25"); 
Query q3("Age<=40"); 
Query q4 = !q1 || (q2 && q2); 

The query q4 will be the same as constructed using statement 
Query q4( 
 "NOT(Name LIKE ’Smith %’)OR((Age>25)AND(Age<=40))" 
 ); 

♦ 

4.13 Associations 

The manipulation with associated objects within object algebra was defined in chapter 3.2.5. We 
considered one generic binary association, but in fact, we need to distinguish between more different 
sub-types. Individual sub-classes of generic class RelationBase differs in cardinality of the association, 
which results in different implementation of database operations. As it was represented, the 
application can define instances of five concrete classes 

template <class  L, class R> 
ChainedRelation<L,R> : public ChainedRelationBase 

template <class  L, class R> 
OneToOneRelation<L,R> : public OneToOneRelationBase 

template <class  L, class R> 
OneToManyRelation<L,R> : public OneToManyRelationBase  

template <class  L, class R> 
ManyToOneRelation<L,R> : public ManyToOneRelationBase 

template <class  L, class R> 
ManyToManyRelation<L,R> : public ManyToManyRelationBase 

The complete tree of all classes beginning with abstract class Relation is shown in figure below. 
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Figure 4.13-1 Class diagram – Relation hierarchy 

Leaf classes in the hierarchy implement associations physically stored in the database. The 
ChainedRelation<L,R> class represents computed associations. Individual couples can be inserted to 
and deleted from the physical associations. Computed ones cannot be modified. 

If modifications are possible, they can be accomplished by four methods 

virtual bool Relation::InsertCouple( 
const RefObj &left, const RefObj &right 
) 

virtual bool Relation::DeleteCouple( 
const RefObj &left, const RefObj &right 
) 

virtual bool Relation::DeleteLeft( 
const RefObj &right 
) 

virtual bool Relation::DeleteRight( 
const RefObj &left 
) 

that allow to insert new couples and delete them. Last two methods delete all associations between 
given object instance right, respectively left and all object instances on the opposite side of the 
association. It is possible also test the existence of association between two object instances by method 

virtual bool Relation::ExistsCouple( 
const RefObj &left, const RefObj &right 
) 

Note that using abstract RefObj class as formal parameters of methods allows use references to 
objects instead of object instances themselves. 

We have defined left-side restriction ϕ*R, right-side restriction R*ϕj, chained association R1*R2 
and reversed association -R in the object algebra. In addition, we need both unary operators left(R) 
and right(R). 

All above-mentioned operators are implemented also in the C++ library. Operator for reversed 
association must be defined five times, because result type of reversed association depends on 
cardinality of initial association. So we get the operator 

template <class  L, class R> ChainedRelation<R,L> ChainedRelation<L,R>::operator –() 
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together with four additional definitions for other four sibling classes. 

template <class  L, class R> 
OneToOneRelation<R,L> OneToOneRelation<L,R>::operator –() 

template <class  L, class R> 
ManyToOneRelation<R,L> OneToManyRelation<L,R>::operator –() 

template <class  L, class R> 
OneToManyRelation<R,L> ManyToOneRelation<L,R>::operator –() 

template <class  L, class R> 
ManyToManyRelation<R,L> ManyToManyRelation<L,R>::operator –() 

A bit more complicated thing is to define correctly all chaining operators. Operator must be defined 
for every combination of template types. One of them is the method 

template <class  L, class X, class Y, class R> ChainedRelation<L,R> operator*( 
const ChainedRelation<L,X> &r1, const ChainedRelation<Y,R> &r2 
); 

all other chaining methods differ only in types of parameters. The same situation is with operators 

template <class  L, class R> ChainedRelation<L,R> Relation<L,R>::operator*( 
const QueRefProto &q, const ChainedRelation<L,R> &r 
) 

for the left-side restriction, and 

template <class  L, class R> ChainedRelation<L,R> Relation<L,R>::operator*( 
const ChainedRelation<L,R> &r, const QueRefProto&q 
) 

for the right-side restriction. Again, the result type is the same for all combinations of parameters. 

Operators left(R) and right(R) are implemented using two methods returning new Result<C> 
instance as. 

template <class  L, class R> Result<L> *ChainedRelation<L,R>::Left( 
const class QueRefProto &r = EQUERY 
) 

and 

template <class  L, class R> Result<R> *ChainedRelation <L,R>::Right( 
const class QueRefProto &l = EQUERY 
) 

In comparison with originally introduced object algebra we allow here its extension. Both left 
and right operators accept additional condition at the time of their execution. However, this extension 
doesn’t extend the power of query language, because the expression Left(R, q) is equivalent to 
Left(R*q). 

To create instance of relation it is necessary to provide a name of the table that holds couples of 
associated primary keys (in case of ManyToManyRelation), a pointer to database connection that 
executes all SQL statements and optionally names of foreign key columns. If names of foreign key 
columns are not defined, they are derived from names of primary key columns in associated classes 
according to following rules:  

• primary key columns belonging to the left associated class are prefixed with prefix “L_” 

• primary key columns belonging to the right associated class are prefixed with prefix “R_” 
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Example 4.13-1 – Associations in C++ 

Thanks to copy constructors and assign operators on all relation classes the programmer 
can write expression 
OracleDatabase MyDatabase(); 
Connection *DbCon = MyDatabase.Connect(”user”,”password”); 
Ref<Leader> Lref; 
Result<Programmer> *Wresult; 
... 
OneToOneRelation<Project,Leader> PL(”PROJECT_LEADER”,DbCon); 
OneToManyRelation<Project,Programmer> PP(”PROJECT_PROGRAMMER”,DbCon); 
WResult = Right(Lref*(-PL)*PP); 
//the same as: WResult = Right(-PL*PP,Lref); 
and obtain this way all workers taking part of any project supervised by given leader, whose database 
reference is stored in Lref variable. 

♦ 

4.14 Binding 

At run-time the object model described in 3.1 must be transparently translated to relational 
model used by RDBMS and vice versa. 

Usual solution of the mapping problem is based on the mandatory pre-processing of the source 
code. Such solution presumes two phases of compilation. The programmer writes the wanted source 
code containing constructs in C++, respectively other host programming language together with 
constructs in specific ODL. As it is shown on following figure, the source code is first pre-processed 
by specific ODL pre-processor. ODL pre-processor generates both pure C++ source code for the 
application and SQL script needed for that generates needed relational schema. Generated source code 
is then compiled the standard way and linked with RDBMS run-time that provides communication 
with the database. 

 
Figure 4.14-1 Compilation of the application 

The automatic pre-processing of the source code allows two different approaches to C++ code 
generation. First of mentioned methods leaves original definitions of persistent C++ classes intact and 
generates code of auxiliary classes that manipulate with data. The schema of auxiliary code generation 
reflects following figure. 
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Figure 4.14-2 Class pre-processing – method I 

Our goal was to allow also hand-made mapping definition. To achieve this goal the mapping 
should be as most simple as possible. The removal of ODL pre-processor from the compilation causes 
the necessity of synchronous changes of persistent class definition and all its auxiliary classes. Such a 
situation complicates the thing. This reason leads to the idea of keeping all relevant information 
directly on one place – in persistent class definition itself. Application of this requirement leads to the 
pre-processing that adds needed piece of code to the persistent class definition itself. The C++ 
compiler then derives all auxiliary classes automatically from its templates. 

 
Figure 4.14-3 Class pre-processing– method II 

By the removal of ODL-pre-processing we obtain much simpler diagram 

 
Figure 4.14-4 Method II without pre-processing 

The proposed syntax of the ODL enhancements is compliant to internal C++ pre-processor. 
ODL constructs map every persistent class onto the data source in the relational model. Member 
attributes of such classes must be declared, mapped onto corresponding columns of the associated data 
source (table, view, SELECT statement etc.) and bound with generated SQL statements.  

4.14.1 Class mapping 

ODL clauses of C++ class definition describe the position of the class in the specialisation graph 
and associate it with the data source code. 

The name of the class is declared by one of two clauses 
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CLASS(NameOfClass); 
ABSTRACT_CLASS (NameOfClass); 

located within class declaration. Using of ABSTRACT_CLASS clause forbids creation of instances of 
the given class. Descendants of PersistentClass class must specify comma-separated list of all direct 
parent classes. For this purpose the ODL provides clause 

PARENTS(“ParentClassList”); 
The association of declared class with the corresponding source of data provides set of clauses 

with names derived form the SQL syntax: 

FROM(“content-of-from-clause”); 
WHERE(“content-of-where-clause ”); 
GROUP_BY(“content-of-group-by-clause ”); 
HAVING(“content-of-having-clause ”); 
ORDER_BY(“content-of-order-by-clause ”); 

The information declared by ODL during the class design is available also at the run-time. 
Functions corresponding to individual ODL specifications are listed in following table. 

 

ODL clause Run-time access methods 

CLASS(NameOfClass) static const char * ClassName() 
static Object *New() 

ABSTRACT_CLASS(NameOfClass) static const char * ClassName() 
static Object *New() 

PARENTS(“ParentClassList”) static const char * ParentClassNames() 

FROM(“content-of-from-clause”) static const char * From() 

WHERE(“content-of-where-clause ”) static const char * Where() 

GROUP_BY(“content-of-group-by-clause ”) static const char * GroupBy() 

HAVING(“content-of-having-clause ”) static const char * Having() 

ORDER_BY(“content-of-order-by-clause ”) static const char * OrderBy() 

 

The ODL specifications CLASS and ABSTRACT_CLASS also define method that creates one 
empty transient instance of the class. Of course, in case of abstract class, none instance is created and 
NULL is returned due to inability of abstract classes to be instantiated. 

4.14.2 Member attribute declaration 

The object model allows atomic member attributes capable of storing in the relational tables. 
Static members of classes are also allowed. Their declaration is not subject of ODL, as they are not 
stored to the database. 

Instead of standard C++ declaration of the member attribute the programmer should use the 
ODL constructs listed in following table. The ODL member attribute declaration declares 
automatically access methods for its reading and setting. Member attribute itself is declared as 
protected and its name is prefixed by underscore character. Besides the standard (read-write) 
declarator we define also read-only declarator that suppresses creation of write access method. Read-
only decelerators have “RO” suffix in its name. 
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C++ 
declaration 

ODL 
declaration 

Run-time 
declaration 

Run-time 
access methods 

dbPtr(C,x); Ref<C> x() const; 
void x(const Ref<T>&); 

class C *x; 

dbPtrRO(C,x); 

long int _x; 

Ref<C> x() const; 

dbString(x); const char *x() const; 
void x(const char *); 

char *x; 

dbStringRO(x); 

char *_x; 

const char *x() const; 

dbChar(x); char x() const; 
void x(char); 

char x; 

dbCharRO(x); 

char _x; 

char x() const; 

dbShort(x); short int x() const; 
void x(short int); 

short int x; 

dbShortRO(x); 

short int _x; 

short int x() const; 

dbUShort(x); unsigned short x() const; 
void x(unsigned short); 

unsigned short x; 

dbUShortRO(x); 

unsigned short _x; 

unsigned short x() const; 

dbInt(x); int x() const; 
void x(int); 

int x; 

dbIntRO(x); 

int _x; 

int x() const; 

dbUInt(x); unsigned int x() const; 
void x(unsigned int); 

unsigned int x; 

dbUIntRO(x); 

unsigned int _x; 

unsigned int x() const; 

dbLong(x); long int x() const; 
void x(long int); 

long int x; 

dbLong(x); 

long int _x; 

long int x() const; 

dbULong(x); unsigned long x() const; 
void x(unsigned long); 

unsigned long x; 

dbULong(x); 

unsigned long _x; 

unsigned long x() const; 

dbBool(x); bool x() const; 
void x(bool); 

bool x; 

dbBool(x); 

bool _x; 

bool x() const; 

dbFloat(x); float x() const; 
void x(float); 

float x; 

dbFloat(x); 

float _x; 

float x() const; 

dbDouble(x); double x() const; 
void x(double); 

double x; 

dbDouble(x); 

double _x; 

double x() const; 

4.14.3 Member attribute mapping 
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After the data source for the C++ class is known, persistent attributes of the class must be 
associated with the corresponding columns of the SQL SELECT statement defined above. 

To map member attributes of defined class provided ODL use two constructs. First of them 
maps member attributes associated with primary key of the data source, the second one is used for all 
other member attributes. Their syntax described by regular expression is 
MAPKEY_BEGIN ( map_specificator )* MAPKEY_END; 
respectively 
MAP_BEGIN ( map_specificator )* MAP_END; 
where the specificator can be repeated any times. One map specificator corresponds to one member 
attribute of the class. The format of the map specificator depends on the ODL data type of the member 
attribute. It associates SQL expression with the name of the member attribute. In case of string (ODL 
data type dbString) it defines also its maximal allowed length. SQL expressions should be fully 
qualified by table name to avoid confusion when more tables are joined together. Independently on the 
fact, if the member attribute can be changed from outside of the instance the programmer can map the 
attribute as read-only to the database. Attributes that are read-only mapped are neither inserted into, 
nor updated in the database. Note that primary keys are treated as read-write regardless on used 
specification. Descendants of Object and ImmutableObject classes are not stored and updated at all. 

 Available mappings are listed below  
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ODL member attribute declaration Corresponding map specificator 

dbPtr(C,x); mapPtr(x,expr); 
mapPtrRO(x,expr); 

dbString(x); mapString(x,expr,length); 
mapStringRO(x,expr,length); 

dbChar(x); mapChar(x,expr); 
mapCharRO(x,expr); 

dbShort(x); mapShort(x,expr); 
mapShortRO(x,expr); 

dbUShort(x); mapUShort(x,expr); 
mapUShortRO(x,expr); 

dbInt(x); mapInt(x,expr); 
mapIntRO(x,expr); 

dbUInt(x); mapUInt(x,expr); 
mapUInt(x,expr); 

dbLong(x); mapLong(x,expr); 
mapLongRO(x,expr); 

dbULong(x); mapULong(x,expr); 
mapULongRO(x,expr); 

dbBool(x); mapBool(x,expr); 
mapBoolRO(x,expr); 

dbFloat(x); mapFloat(x,expr); 
mapBoolRO(x,expr); 

dbDouble(x); mapDouble(x,expr); 
mapDoubleRO(x,expr); 

 

At the run-time the application can obtain all necessary information by calling protected static 
methods 

protected: static void C::_MapKey( 
int i,  
const char *&attr,  
unsigned char Object::*mem 
const char *&expr,  
char &type,  
unsigned int &len, 
bool &rw 
); 

respectively 
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protected: static void C::_Map( 
int i, 
const char *&attr, 
unsigned char Object::*mem 
const char *&expr, 
char &type, 
unsigned int &len, 
bool &rw 
); 

of the corresponding class C. They are accessed virtually through virtual protected methods 

protected: virtual void Proto<C>::_MapKey( 
int i, 
const char *&attr, 
unsigned char Object::*mem 
const char *&expr, 
char &type, 
unsigned int &len, 
bool &rw 
); 

respectively 

protected: virtual void Proto<C>::Map( 
int i, 
const char *&attr, 
unsigned char Object::*mem 
const char *&expr, 
char &type, 
unsigned int &len, 
bool &rw 
); 

defined on the corresponding prototype. First parameter is the order of the member attribute counted 
from zero. The method returns the name of the member attribute, the address of the member attribute 
inside the instance, the SQL expression that must be used to retrieve data from data source, the type of 
the attribute coded by internal type code, the attribute’s maximal length and read-write characteristics. 
In case the attribute on the i-th position is not defined, methods return empty attribute name, empty 
expression and “unknown” data type with zero length. Addresses of attributes are used to transfer their 
values between object instances and the database. Internal type codes are 

 

Internal code Value Type of member attribute 

TYPE_INT ‘i’ Signed integer (of any length) 

TYPE_UNSIGNED ‘u’ Unsigned integer (of any length) 

TYPE_FLOAT ‘f’ Real number (float or double) 

TYPE_CHAR ‘c’ Char 

TYPE_STRING ‘s’ Zero-terminated string (char *) 

TYPE_UNKNOWN ‘?’ Non-existing member attribute 
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4.14.4 Deriving object classes 

Amount of information that can or must be provided for particular class depends on the basic 
type of persistent class. Following table summarises all differences. 

 Object Immutable
Object 

Database 
Object 

Persistent 
Object 

Class hierarchy definitions 

CLASS 
ABSTRACT_CLASS 

����REQ 
� 

����REQ 
� 

����REQ 
� ����REQ 

PARENTS � � � ����REQ 

Associated table/select definitions 

FROM ����REQ ����REQ ����REQ ����REQ 

WHERE ���� ���� ���� � 

GROUP_BY ���� ���� � � 

HAVING ���� ���� � � 

Prototype definitions 

CLASS_PROTOTYPE 
ABSTRACT_CLASS_PROTOTYPE 

����REQ 
� 

����REQ 
� 

����REQ 
� ����REQ 

PROTOTYPE ����REQ ����REQ ����REQ ����REQ 

Attribute mapping 

MAPKEY_BEGIN ... MAPKEY_END � ���� ���� � 

MAP_BEGIN ... MAP_END ���� ���� ���� ���� 

ODL specification from the first column of the table must be used, if the class is derived, 
directly or indirectly, from classes that are checked with the ����REQ sign. The sign ���� allows redefinition 
of the class property meanwhile value � forbids it. Abstract descendants of the PersistentObject class 
should use definitions prefixed by ABSTRACT. 

Example 4.14-1 – deriving Object descendant 

Suppose the existence of the table  
BANK_ACCOUNT(  
 ACCOUNT_NUMBER STRING(20) PRIMARY KEY, 
 ACCOUNT_OWNER INTEGER REFERENCES CUSTOMER.CUST_NR, 
 ACCOUNT_CURRENCY STRING(3), 
 ACCOUNT_BALANCE FLOAT 
 ); 
in the database. We can obtain statistical data from this table using select statement 
SELECT 
 BANK_ACCOUNT.ACCOUNT_CURRENCY, 
 COUNT(*), 
 AVG(BANK_ACCOUNT.ACCOUNT_BALANCE)  
FROM BANK_ACCOUNT 
GROUP BY BANK_ACCOUNT.ACCOUNT_CURRENCY 
HAVING COUNT(*)>100 
ORDER BY COUNT(*) DESC; 
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If we want to process them in C++ program, we should define new descendant of Object class 
capable to store rows from this select 
class AccountStat : public Object { 
 dbString(Currency,3); 
 dbInt(Count); 
 dbFloat(Avg); 
}; 
and map it onto the select statement. The mapping of class will add information to the class definition. 
class AccountStat : public Object { 
 dbString(Currency); 
 dbInt(Count); 
 dbFloat(Avg); 
 CLASS(AccountStat); 
 FROM(”BANK_ACCOUNT”); 
 GROUP_BY(”BANK_ACCOUNT.ACCOUNT_CURRENCY”); 
 HAVING(”COUNT(*)>100”); 
 ORDER_BY(”COUNT(*) DESC”); 
 MAP_BEGIN 
  mapString(Currency,”BANK_ACCOUNT.ACCOUNT_CURRENCY”,3) 
  mapInt(Count,”COUNT(*)”) 
  mapFloat(Avg,”AVG(BANK_ACCOUNT.ACCOUNT_BALANCE)”) 
 MAP_END; 
}; 
CLASS_PROTOTYPE(AccountStat); 

Requirement of fully qualified expressions brings overhead to the class design. To avoid 
problems when the name of the table changes we allow using meta-name #THIS for reference to the 
associated table name. Using this syntax extension we can define the AccountStat class more easilly. 
class AccountStat : public Object { 
 dbString(Currency); 
 dbInt(Count); 
 dbFloat(Avg); 
 CLASS(AccountStat); 
 FROM(”BANK_ACCOUNT”); 
 GROUP_BY(”#THIS.ACCOUNT_CURRENCY”); 
 HAVING(”COUNT(*)>100”); 
 ORDER_BY(”COUNT(*) DESC”); 
 MAP_BEGIN 
  mapString(Currency,”#THIS.ACCOUNT_CURRENCY”,3) 
  mapInt(Count,”COUNT(*)”) 
  mapFloat(Avg,”AVG(#THIS.ACCOUNT_BALANCE)”) 
 MAP_END; 
}; 

♦ 

Example 4.14-2 – deriving DatabaseObject descendant 

Suppose that we do not want read statistics about bank accounts, but also process rows of the 
table directly, we can define another persistent class, this time derived from the PersistentObject class 
and map it onto table BANK_ACCOUNT. 
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class Account : public DatabaseObject { 
 dbString(AccountNr); 
 dbInt(Owner); 
 dbString(Currency); 
 dbFloat(Balance); 
 CLASS(Account); 
 FROM(”BANK_ACCOUNT”); 
 MAPKEY_BEGIN 
  mapString(AccountNr,”#THIS.ACCOUNT_NUMBER”,20) 
 MAPKEY_END; 
 MAP_BEGIN 
  mapInt(Owner,”#THIS.ACCOUNT_OWNER”) 
  mapString(Currency,”#THIS.ACCOUNT_CURRENCY”,3) 
  mapFloatRO(Balance,”#THIS.ACCOUNT_BALANCE”) 
 MAP_END; 
}; 
CLASS_PROTOTYPE(Account); 

Due to read-only mapping of the account balance the program will not be able to change the 
amount of money on individual accounts albeit it is possible to change it in the memory. 

♦ 

Example 4.14-3 – deriving ImmutableObject descendant 

The identical definition of the class Account, this time derived from the ImmutableObject class, 
allows reading accounts to the memory but not changing them in the database at all. 
class Account : public ImmutableObject { 
 dbString(AccountNr); 
 dbInt(Owner); 
 dbString(Currency); 
 dbFloat(Balance); 
 CLASS(Account); 
 FROM(”BANK_ACCOUNT”); 
 MAPKEY_BEGIN 
  mapString(AccountNr,”#THIS.ACCOUNT_NUMBER”,20) 
 MAPKEY_END; 
 MAP_BEGIN 
  mapInt(Owner,”#THIS.ACCOUNT_OWNER”) 
  mapString(Currency,”#THIS.ACCOUNT_CURRENCY”,3) 
  mapFloatRO(Balance,”#THIS.ACCOUNT_BALANCE”) 
 MAP_END; 
}; 
CLASS_PROTOTYPE(Account); 

This time would be better to declare all four member attributes as read-only to deny changes of 
instance in memory. 

♦ 

Example 4.14-4 – deriving PersistentObject descendant 

Let suppose now that we want to define regular C++ class Account capable to be further 
specialised in its sub-classes. In this case the class should be derived from PersistentClass class or any 
of its descendants. To the class 
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class Account : public PersistentObject { 
 dbString(AccountNr); 
 dbPtr(Person,Owner); 
 dbString(Currency); 
 dbFloat(Balance); 
}; 
should be added needed ODL specifications as follows 
class CppAccount : public PersistentObject { 
 dbString(AccountNr); 
 dbPtr(Person,Owner); 
 dbString(Currency); 
 dbFloat(Balance); 
 CLASS(CppAccount); 
 PARENTS(”PersistentObject”); 
 FROM(”CPPACCOUNT”); 
 MAP_BEGIN 
  mapString(AccountNr,”ACCOUNTNR”,20) 
  mapPtr(Owner,”OWNER”) 
  mapString(Currency,”CURRENCY”,3) 
  mapFloat(Balance,”BALANCE”) 
 MAP_END; 
}; 
CLASS_PROTOTYPE(Account); 

In this case, of course, the table in the database must be declared according to the class 
definition.  
TABLE CPPACCOUNT ( 
 OID NUMBER 
  CONSTRAINT CPPACCOUNT_PK PRIMARY KEY 
  CONSTRAINT CPPACCOUNT_FK_PERSISTENTOBJECT 
   REFERENCES PERSISTENTOBJECT(OID) ON DELETE CASCADE, 
 ACCOUNTNR VARCHAR28(20), 
 OWNER NUMBER 
  CONSTRAINT CPPACCOUNT_OWNER_FK 
   REFERENCES PERSON(OID), 
 CURRENCY VARCHAR2(3), 
 BALANCE FLOAT 
}; 

The OID column should be declared as primary key column also in the database. The reference 
to the parent class table together with ON DELETE CASCADE clause simplifies deleting of object. 
The table definition can be generated algorithmically. 

♦ 

4.14.5 DDL statement generation 

The mapping between the object library and the relational database assumes, respectively 
defines the structure of the database. The class hierarchy derived from the PersistentObject class is 
stored in many tables. To make the mapping easy, the library is able to generate the SQL script that 
creates all needed database objects in the needed format. 

There are four methods for DDL script generation inside the library. 

public: virtual bool Database::WriteDDL(ofstream &S); 
public: virtual bool ProtoBase::WriteDDL(ofstream &S, class Database &Db); 

                                                      
8 Oracle RDBMS type name for VARIABLE CHARACTER 



 77

public: virtual bool Relation::WriteDDL(ofstream &S, class Database &Db); 
public: virtual bool ClassRegister::WriteDDL(ofstream &S, class Database &Db); 
 

All of them take open output stream and write needed SQL statement to it. Database generates 
database objects needed for generation of object identifiers and serial numbers. As this depends on 
particular database provider, each new database support should redefine this method as needed. The 
Oracle database uses two sequences that are created by the script. Sequences are used in two protected 
methods 

virtual bool Connection::_NextOID(long int &nxtoid, long int &nxtsn); 
and 

virtual bool Connection::_NextSN(long int curoid, long int &nxtsn); 
that returns new couple of OID and serial number for new persistent instance, respectively new serial 
number for changed instance. 

Note: There is a naming conflict between the C++ fstream implementation and the Oracle OCI 
implementation. Both of them define identifier “text” in different way. To solve this conflict, 
definition of OCI type text in oratypes.h must be commented out. If necessary, all other usage of text 
type must be replaced by the oratext type, which is equivalent to original one.  

Each prototype of class derived from the PersistentObject class generates CREATE TABLE 
statement that creates needed table to store instances of the class. To use corresponding database types 
for columns, the Database class defines method 

public: virtual char *Database::ColumnTypeDDL(char coltype, int colsize); 
that provides correct columns types for given attribute type and length. The OracleDatabase class 
returns “VARCHAR2(20)” for TYPE_STRING of length 20, “CHAR(1)” for TYPE_CHAR etc. 
Other databases can redefine this method as necessary. 

Each instance of Relation descendant generates statements that create or alter some table or 
tables to be able to store pairs of related instances. Chained relations are not stored directly in the 
database. Thus, they generate no statement. To use corresponding database types for columns, they use 
method 

public: virtual char *ProtoBase::ColumnTypeDDL(int i, class Database &Db); 
that provides correct columns types for i-th attribute inside the class. 

To make SQL code generation easier, the ClassRegister class generates SQL CREATE TABLE 
statements for all registered persistent classes in correct order. Table associated with particular class is 
created after all tables associated with all its predecessors. 
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5 Conclusion 

Thesis provides complete solution of interoperability between object-oriented language and 
relational databases, which are, and in near future probably stay, the main storage system. It consists 
of proposal and pilot implementation of the persistent object library. The solution offers comparable 
functionality on relational databases as the ODMG standard. It provides easy-to-use application 
interface, which significantly decreases the impedance problem. 

The library design comes out of own, in the thesis thoroughly described, object model. Proposed 
object model supports most of advanced features as multiple inheritance and abstract classes. Only 
member attributes are limited mostly on atomic values that can be stored in the database. With some 
extra effort on side of the developer the application can define also structures and arrays inside 
persistent classes. In this case the mapping of structured class instance onto flat relational table is less 
straightforward, but not impossible. Persistent classes defined inside other persistent classes were not 
considered in the object model and are not supported. In case the application should define persistent 
classes as members of another classes, the application design must be modified to use either database 
pointers or associations instead. 

The mapping between C++ objects and database tables is implemented through the object 
definition language that combines capabilities of standard C pre-processor with the syntax of SQL 
SELECT statement. Description of mappings is included directly into class declaration part of the 
source code and so both data and mapping definition are visible at the same place. The simplicity of 
the definition makes possible to define the mapping by hand. Another possibilities are to write 
program that will parse the C++ headers and adds necessary code automatically. 

The programmer gets simple but powerful query language derived from relational algebra. In 
case of C++ the query language uses its overloaded operators and so its expressions can be used in a 
natural way known to programmers. However, query language, based on relational algebra is not so 
strong as OQL based on SQL. Common queries that allow searching instances according their inner 
values, obtaining directly or even indirectly associated instances or retrieving particular instance are 
directly supported. Suggested and implemented operators defined on classes and association allow 
formulating of broad range of most frequent queries. Very complex queries that cannot be directly 
expressed in relational algebra are uncommon. Nevertheless such queries can be still formulated in 
SQL WHERE clause fragment, passed to the Query instance. Owing to possibility to access legacy 
tables through provided unified interface, the complexity of the query can be easily hidden in the 
database in form of view. 

Although the query language was designed mainly for manipulation on object hierarchies, it is 
uniformly extended to work also on regular database tables with arbitrary primary keys. This feature 
allows applications to create own persistent classes and simultaneously access and manipulate older 
relational data produced by another database applications. It is allowed to make associations between 
both types of classes without limitation. The proposed query language has strong instrument at 
disposal concerning associations. It allows easy retrieving indirectly associated instances. For this 
purpose the programmer can use chaining operators together with both-sided restriction. 

Both the object model and the query language are fully independent on concrete database server 
provider. The library implementation itself separates database dependent code and allows easy 
portability on different databases. 

The object buffer implemented inside the object library the database instance appears similar to 
virtual memory to the application. Whenever the application accesses the object, it is transparently 
retrieved from the database. The application need not care about the SQL code generation.  

Transactional processing allows keeping data consistent in multi-user environment. User has 
possibility to widely change the data sharing strategies and to gain either high level of consistency and 
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security, or higher speed of application. Balancing of performance can be done on more levels starting 
with the database, continuing through connection level and ending by setting of individual rules for 
each particular object instance. 

Proposed class hierarchy in the library unifies behaviour of persistent classes together with 
database pointers, queries and its results. This approach simplifies the application interface and allows 
better optimisation of the application. Programmer can do almost all database operations directly on 
instances, as well as on its pointers. The object instances need not often be in the memory at all. 
Objects and its database pointers can stand in place of query, which is helpful mainly in work with 
associated objects. Another advantage of this solution is representation of results in form of pointer to 
current retrieved instance in the result set. This approach combines database cursors with behaviour of 
C++ arrays that correspond to pointers.  

The openness of the object model proposal, query language and the implementation make future 
extensions and modifications easy. It is supposed that this thesis becomes the good base of further 
research.  

One of main topics that the future development should provide is the extended object model 
incorporating ternary associations. This feature was not in the centre of interest, because the standard 
object model doesn’t work with concept of ternary association. Object-oriented languages work with 
uni-directional pointers and even bi-directional binary associations must be modelled using pointers or 
collections of pointers. The programmer of object-oriented application is responsible for keeping 
binary associations consistent, although object oriented databases can take over this responsibility. 
Ternary and more-ary associations are not directly supported at all. Both entity-relationships models 
and relational databases on the other hand use and handle binary, ternary or more-ary associations with 
ease. Implementing of ternary associations in object algebra will allow direct modelling of 
associations with parameter as well as associations similar to those between producers, consumers and 
traded commodities. 

The automatic SQL code generation supposes the table per class mapping of classes onto tables. 
Type of mapping was intentionally projected separately. Another of evolving steps would be the 
extension that allows different mapping schemas for different sub-graphs or branches in the class 
hierarchy graph.  
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