lecture 9:
Relational design – algorithms

course:
Database Systems (NDBI025)
SS2011/12

doc. RNDr. Tomáš Skopal, Ph.D.

Department of Software Engineering, Faculty of Mathematics and Physics, Charles University in Prague
Today’s lecture outline

• schema analysis
 – basic algorithms (attribute closure, FD membership and redundancy)
 – determining the keys
 – testing normal forms

• normalization of universal schema
 – decomposition (to BCNF)
 – synthesis (to 3NF)
Attribute closure

- closure X^+ of attribute set X according to FD set F
 - principle: we interatively derive all attributes “F-determined” by attributes in X
 - complexity $O(m*n)$, where n is the number of attributes and m is number of FDs

Algorithm $\text{AttributeClosure}(\text{set of dependencies } F, \text{set of attributes } X) : \text{returns set } X^+$

$\text{ClosureX} := X; \text{DONE} := \text{false}; m = |F|;$

while not DONE do

$\text{DONE} := \text{true};$

$\text{for } i := 1 \text{ to } m \text{ do}$

$\text{if } (\text{LS}[i] \subseteq \text{ClosureX} \text{ and } \text{RS}[i] \not\subseteq \text{ClosureX}) \text{ then}$

$\text{ClosureX} := \text{ClosureX} \cup \text{RS}[i];$

$\text{DONE} := \text{false};$

endif

endfor

endwhile

$\text{return } \text{ClosureX};$

Note: expression $\text{LS}[i]$ ($\text{RS}[i]$, respectively) represents left (right, resp.) side of i-th FD in F

The trivial FD is used (algorithm initialization) and then transitivity (test of left side in the closure). The composition and decomposition usage is hidden in the inclusion test.
Example – attribute closure

\[F = \{ a \rightarrow b, \ bc \rightarrow d, \ bd \rightarrow a \} \]

\(\{b,c\}^+ = ? \)

1. \(\text{Closure}_X := \{b,c\} \) \quad \text{(initialization)}

2. \(\text{Closure}_X := \text{Closure}_X \cup \{d\} = \{b,c,d\} \) \quad (bc \rightarrow d)

3. \(\text{Closure}_X := \text{Closure}_X \cup \{a\} = \{a,b,c,d\} \) \quad (bd \rightarrow a)

\(\{b,c\}^+ = \{a,b,c,d\} \)
Membership test

- we often need to check if a FD $X \rightarrow Y$ belongs to F^+, i.e., to solve the problem $\{X \rightarrow Y\} \in F^+$
- materializing F^+ is not practical, we can employ the attribute closure

algorithm **IsDependencyInClosure**(set of dependencies F, FD $X \rightarrow Y$)

 return $Y \subseteq \text{AttributeClosure}(F, X)$;
Redundancy testing

The membership test can be easily used when testing redundancy of

- $FD \ X \rightarrow Y$ in F.
- attribute in X (according to F and $X \rightarrow Y$).

algorithm $IsDependencyRedundant$(set of dependencies F, dependency $X \rightarrow Y \in F$)
 return $IsDependencyInClosure(F - \{X \rightarrow Y\}, X \rightarrow Y)$;

algorithm $IsAttributeRedundant$(set of deps. F, dep. $X \rightarrow Y \in F$, attribute $a \in X$)
 return $IsDependencyInClosure(F, X - \{a\} \rightarrow Y)$;

In the ongoing slides we find useful the algorithm for reduction of the left side of a FD:

algorithm $GetReducedAttributes$(set of deps. F, dep. $X \rightarrow Y \in F$)
 $X' := X$;
 for each $a \in X$ do
 if $IsAttributeRedundant(F, X' \rightarrow Y, a)$ then $X' := X' - \{a\}$;
 endfor
 return X';
Minimal cover

- for all FDs we test redundancies and remove them

algorithm \textit{GetMinimumCover}(set of dependencies F): returns minimal cover G

decompose each dependency in F into elementary ones

\begin{verbatim}
for each X \rightarrow Y in F do
 F := (F –
 \{X \rightarrow Y\}) \cup
 \{GetReducedAttributes(F, X \rightarrow Y) \rightarrow Y\};
endfor

for each X \rightarrow Y in F do
 if IsDependencyRedundant(F, X \rightarrow Y) then F := F – \{X \rightarrow Y\};
endfor

return F;
\end{verbatim}
Determining (first) key

- the algorithm for attribute redundancy testing could be used directly for determining a key
- redundant attributes are iteratively removed from left side of \(A \rightarrow A \)

Algorithm `GetFirstKey` (set of deps. \(F \), set of attributes \(A \)) : returns a key \(K \);

```plaintext
return GetReducedAttributes(F, A → A);
```

Note: Because multiple keys can exist, the algorithm finds only one of them. Which? It depends on the traversing of the attribute set within the algorithm `GetReducedAttributes`.
Determining all keys, the principle

Let’s have a schema $S(A, F)$. Simplify F to minimal cover.

1. Find any key K (see previous slide).
2. Take a FD $X \rightarrow y$ in F such that $y \in K$ or terminate if not exists (there is no other key).
3. Because $X \rightarrow y$ and $K \rightarrow A$, it transitively holds also $X\{K - y\} \rightarrow A$, i.e., $X\{K - y\}$ is super-key.
4. Reduce FD $X\{K - y\} \rightarrow A$ so we obtain key K' on the left side.
 This key is surely different from K (we removed y).
5. If K' is not among the determined keys so far, we add it, declare $K = K'$ and repeat from step 2. Otherwise we finish.

Relational design – algorithms (NDBIO25, Lect. 9)
Determining all keys, the algorithm

- Lucchesi-Osborn algorithm
 - to an already determined key we search for equivalent sets of attributes, i.e., other keys
- NP-complete problem (theoretically exponential number of keys/FDs)

algorithm \texttt{GetAllKeys}(set of deps. F, set of attributes A) : returns set of all keys Keys;

let all dependencies in F be non-trivial, i.e. replace every $X \rightarrow Y$ by $X \rightarrow (Y - X)$

$K := \text{GetFirstKey}(F, A)$;
Keys := \{K\};
Done := false;

\textbf{while} Done = false \textbf{do}
 Done := true;
 \textbf{for each} $X \rightarrow Y \in F$ \textbf{do}
 \textbf{if} $(Y \cap K \neq \emptyset \text{ and } \not\exists ! K' \in \text{Keys} : K' \subseteq (K \cup X) - Y)$ \textbf{then}
 $K := \text{GetReducedAttributes}(F, ((K \cup X) - Y) \rightarrow A)$;
 Keys := Keys \cup \{K\};
 Done := false;
 \textbf{endfor}
\textbf{endwhile}

return Keys;

Relational design – algorithms (NDBI025, Lect. 9)
Example – determining all keys

Contracts\((A, F)\)

\[A = \{ c = \text{ContractId}, s = \text{SupplierId}, j = \text{ProjectId}, d = \text{DeptId}, p = \text{PartId}, q = \text{Quantity}, v = \text{Value} \} \]

\[F = \{ c \rightarrow \text{all}, sd \rightarrow p, p \rightarrow d, jp \rightarrow c, j \rightarrow s \} \]

1. Determine first key – Keys = \{c\}
2. **Iteration 1**: take \(jp \rightarrow c\) that has a part of the last key on right side (in this case the whole key – \(c\)) and \(jp\) is not a super-set of already determined key
3. \(jp \rightarrow \text{all}\) is reduced (no redundant attribute), i.e.,
4. Keys = \{c, jp\}
5. **Iteration 2**: take \(sd \rightarrow p\) that has a part of the last key on right side (\(jp\)), \{jsd\} is not super-set of \(c\) nor \(jp\), i.e., it is a key candidate
6. in \(jsd \rightarrow \text{all}\) we get redundant attribute \(s\), i.e.,
7. Keys = \{c, jp, jd\}
8. **Iteration 3**: take \(p \rightarrow d\), however, \(jp\) was already found so we do not add it
9. finishing as the iteration 3 resulted in no key addition

Relational design – algorithms (NDBI025, Lect. 9)
Testing normal forms

• NP-complete problem
 – we must know all keys – then it is sufficient to test a FD in F, so we do not need to materialize F^+
 – or, just one key needed, but also needing extension of F to F^+

• fortunately, in practice the keys determination is fast
 – thanks to limited size of F and „separability“ of FDs
Design of database schemas

Two means of modeling relational database:

• we get a set of relational schemas
 (as either direct relational design or conversion from conceptual model)
 – normalization performed separately on each table
 – the database could get unnecessarily highly “granularized” (too many tables)

• considering the whole database as a bag of (global) attributes results in a single
 universal database schema – i.e., one big table – including single set of FDs
 – normalization performed on the universal schema
 – less tables (better „granulating“)
 – „classes/entities“ are generated (recognized) as the consequence of FD set
 – modeling at the attribute level is less intuitive than the conceptual modeling
 (historical reasons)

• both approaches could be combined – i.e., at first, create a conceptual database
 model, then convert it to relational schemas and finally merge some |
 (all in the extreme case)
Relational schema normalization

- just one way – decomposition to multiple schemas
 - or merging some „abnormal“ schemas and then decomposition
- different criteria
 - data integrity preservation
 - lossless join
 - dependency preserving
 - requirement on normal form (3NF or BCNF)
- manually or algorithmically
Why to preserve integrity?

If the decomposition is not limited, we can decompose the table to several single-column ones that surely are all in BCNF.

Clearly, there is something wrong with such a decomposition... it is **lossy** and it does not **preserve** dependencies
Lossless join

- a property of decomposition that ensures correct joining (reconstruction) of the universal relation from the decomposed ones

Definition 1:
Let $R(\{X \cup Y \cup Z\}, F)$ be universal schema, where $Y \rightarrow Z \in F$. Then decomposition $R_1(\{Y \cup Z\}, F_1), R_2(\{Y \cup X\}, F_2)$ is lossless.

- **Alternative Definition 2:**
Decomposition of $R(A, F)$ into $R_1(A_1, F_1), R_2(A_2, F_2)$ is lossless, if $A_1 \cap A_2 \rightarrow A_1$ or $A_2 \cap A_1 \rightarrow A_2$

- **Alternative Definition 3:**
Decomposition of $R(A, F)$ into $R_1(A_1, F_1), ..., R_n(A_n, F_n)$ is lossless, if $R' = \bigstar_{i=1..n} R'[A_i]$.

Note:
R' is an instance of schema R (i.e., actual relation/table – the data).
Operation \bigstar is natural join and $R'[A_i]$ is projection of R' on an attribute subset $A_i \subseteq A$.

Relational design – algorithms (NDBI025, Lect. 9)
Example – lossy decomposition

<table>
<thead>
<tr>
<th>Company</th>
<th>Uses DBMS</th>
<th>Data managed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>Oracle</td>
<td>50 TB</td>
</tr>
<tr>
<td>Sun</td>
<td>DB2</td>
<td>10 GB</td>
</tr>
<tr>
<td>Microsoft</td>
<td>MSSQL</td>
<td>30 TB</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Oracle</td>
<td>30 TB</td>
</tr>
</tbody>
</table>

Company, Uses DBMS

<table>
<thead>
<tr>
<th>Company</th>
<th>Uses DBMS</th>
<th>Data managed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>Oracle</td>
<td>50 TB</td>
</tr>
<tr>
<td>Sun</td>
<td>DB2</td>
<td>10 GB</td>
</tr>
<tr>
<td>Microsoft</td>
<td>MSSQL</td>
<td>30 TB</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Oracle</td>
<td>30 TB</td>
</tr>
</tbody>
</table>

Company, Data managed

<table>
<thead>
<tr>
<th>Company</th>
<th>Data managed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>50 TB</td>
</tr>
<tr>
<td>Sun</td>
<td>10 GB</td>
</tr>
<tr>
<td>Microsoft</td>
<td>30 TB</td>
</tr>
</tbody>
</table>

Company, Uses DBMS

„reconstruction“ (natural join)

<table>
<thead>
<tr>
<th>Company</th>
<th>Uses DBMS, Data managed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>Oracle, 50 TB</td>
</tr>
<tr>
<td>Sun</td>
<td>Oracle, 10 GB</td>
</tr>
<tr>
<td>Sun</td>
<td>DB2, 10 GB</td>
</tr>
<tr>
<td>Sun</td>
<td>DB2, 50 TB</td>
</tr>
<tr>
<td>Microsoft</td>
<td>MSSQL, 30 TB</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Oracle, 30 TB</td>
</tr>
</tbody>
</table>

Company, Uses DBMS, Data managed

Relational design – algorithms (NDBI025, Lect. 9)
Example – lossless decomposition

<table>
<thead>
<tr>
<th>Company</th>
<th>HQ</th>
<th>Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>Santa Clara</td>
<td>25 m</td>
</tr>
<tr>
<td>Oracle</td>
<td>Redwood</td>
<td>20 m</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Redmond</td>
<td>10 m</td>
</tr>
<tr>
<td>IBM</td>
<td>New York</td>
<td>15 m</td>
</tr>
</tbody>
</table>

Company, HQ → Altitude

<table>
<thead>
<tr>
<th>Company</th>
<th>HQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>Santa Clara</td>
</tr>
<tr>
<td>Oracle</td>
<td>Redwood</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Redmond</td>
</tr>
<tr>
<td>IBM</td>
<td>New York</td>
</tr>
</tbody>
</table>

„reconstruction“ (natural join)

<table>
<thead>
<tr>
<th>HQ</th>
<th>Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Clara</td>
<td>25 m</td>
</tr>
<tr>
<td>Redwood</td>
<td>20 m</td>
</tr>
<tr>
<td>Redmond</td>
<td>10 m</td>
</tr>
<tr>
<td>New York</td>
<td>15 m</td>
</tr>
</tbody>
</table>

Relational design – algorithms (NDBI025, Lect. 9)
Dependency preserving

• a decomposition property that ensures no FD will be lost

• **Definition:**
 Let $R_1(A_1, F_1), R_2(A_2, F_2)$ is decomposition of $R(A, F)$, then such decomposition preserves dependencies if $F^+ = (\bigcup_{i=1..n} F_i)^+$.

• Dependency preserving could be violated in two ways
 – during decomposition of F we do not derive all valid FDs – we lose FD that should be preserved in a particular schema
 – even if we derive all valid FDs (i.e., we perform projection of F^+), we may lose a FD that is valid **across the schemas**
Example – dependency preserving

- Dependencies not preserved, we lost HQ → Altitude
- Dependencies preserved

<table>
<thead>
<tr>
<th>Company</th>
<th>HQ</th>
<th>Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>Santa Clara</td>
<td>25 m</td>
</tr>
<tr>
<td>Oracle</td>
<td>Redwood</td>
<td>20 m</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Redmond</td>
<td>10 m</td>
</tr>
<tr>
<td>IBM</td>
<td>New York</td>
<td>15 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company</th>
<th>HQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>Santa Clara</td>
</tr>
<tr>
<td>Oracle</td>
<td>Redwood</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Redmond</td>
</tr>
<tr>
<td>IBM</td>
<td>New York</td>
</tr>
</tbody>
</table>

Relational design – algorithms (NDBI025, Lect. 9)
The “Decomposition” algorithm

- algorithm for decomposition into BCNF, preserving lossless join
- does not preserve dependencies
 – not an algorithm property – sometimes we simply cannot decompose into BCNF with all FDs preserved

algorithm Decomposition(set of elem. deps. F, set of attributes A) : **returns set** \(\{R_i(A_i, F_i)\} \)

Result := \(\{R(A, F)\} \);
Done := false;
Create \(F^+ \);
while not Done do
 if \(\exists R_i(F_i, A_i) \in \) Result not being in BCNF then // if there is a schema in the result violating BCNF
 Let \(X \rightarrow Y \in F_i \) such that \(X \rightarrow A_i \not\in F^+ \). // X is not (super)key and so \(X \rightarrow Y \) violates BCNF
 Result := \((\text{Result} - \{R_i(A_i, F_i)\}) \cup \{R_i(A_i - Y, \text{cover}(F, A_i - Y))\}) \cup \{R_j(X \cup Y, \text{cover}(F, X \cup Y))\} \) // we remove the schema being decomposed
 // we add the schema being decomposed without attributes
 else
 Done := true;
endwhile
return Result;

Note: Function \(\text{cover}(X, F) \) returns all FDs valid on attributes from \(X \) in a superset of \(F^+ \) that contains only

- Relational design – algorithms (NDBI025, Lect. 9)
Example – decomposition

Contracts \((A, F)\)

\[A = \{c = \text{ContractId}, s = \text{SupplierId}, j = \text{ProjectId}, d = \text{DeptId}, p = \text{PartId}, q = \text{Quantity}, v = \text{Value}\} \]

\[F = \{c \rightarrow \text{all}, sd \rightarrow p, p \rightarrow d, jp \rightarrow c, j \rightarrow s\} \]

Relational design – algorithms (NDBI025, Lect. 9)
The “Synthesis” algorithm

- algorithm for decomposition into 3NF, preserving dependencies
 - basic version not preserving lossless joins

algorithm **Synthesis** (set of elem. deps. \(F \), set of attributes \(A \)) : returns set \(\{ R_i(F_i, A_i) \} \)

create minimal cover from \(F \) into \(G \)
compose FDs having equal left side into a single FD
every composed FD forms a scheme \(R_i(A_i, F_i) \) of decomposition

return \(\bigcup_{i=1..n} \{ R_i(A_i, F_i) \} \)

- lossless joins can be preserved by adding another schema into the decomposition that contains *universal key* (i.e., a key from the original universal schema)
- a schema in decomposition that is a subset of another one can be deleted
- we can try to merge schemas that have functionally equivalent keys, but such an operation can violate 3NF! (or BCNF if achieved)
Example – synthesis

Contracts\((A, F)\)

\[
A = \{c = \text{ContractId}, s = \text{SupplierId}, j = \text{ProjectId}, d = \text{DeptId}, p = \text{PartId}, \\
q = \text{Quantity}, v = \text{Value}\} \\
\]

\[
F = \{c \rightarrow sjdpqv, sd \rightarrow p, p \rightarrow d, jp \rightarrow c, j \rightarrow s\} \\
\]

Minimal cover:
- There are no redundant attributes in FDs. There were removed redundant FDs \(c \rightarrow s\) and \(c \rightarrow p\).
- \(G = \{c \rightarrow j, c \rightarrow d, c \rightarrow q, c \rightarrow v, sd \rightarrow p, p \rightarrow d, jp \rightarrow c, j \rightarrow s\}\)

Composition:
- \(G' = \{c \rightarrow jdqv, sd \rightarrow p, p \rightarrow d, jp \rightarrow c, j \rightarrow s\}\)

Result:
- \(R_1(\{cqjdv\}, \{c \rightarrow jdqv\}), R_2(\{sdp\}, \{sd \rightarrow p\}), R_3(\{pd\}, \{p \rightarrow d\}), R_4(\{jpc\}, \{jp \rightarrow c\}), \)

\(R_5(\{js\}, \{j \rightarrow s\})\)

\(\text{Equivalent keys: } \{c, jp, jd\}\)

Relational design – algorithms (NDBI025, Lect. 9)
Bernstein’s extension

• if merging the schemas using equivalent keys K_1, K_2 violated 3NF, we perform the decomposition again

1. $F_{\text{new}} = F \cup \{K_1 \rightarrow K_2, K_2 \rightarrow K_1\}$
2. we determine redundant FDs in F_{new} but remove them from F
3. the final tables are made from reduced F and $\{K_1 \cup K_2\}$
Demo

• program Database algorithms
 – download from my web page

• example 1

• example 2