

 Kapitola 24
Státnice I3: Automatická analýza jazyka

 24.1 Morphology & Tagging

 	Task, formally: [image: A+ → T]
 (simplified), split morphology & tagging (disambiguation): [image: A+ → 2(L,C1,C2,...,Cn) → T]. Tagging must look at
 context.

 	Tagset: influenced by linguistics as well as technical decisions.
 	Tag ˜ n-tuple of grammar information, often thought of as a flat list.

 	Eng. tagsets ˜ 45 (PTB), 87 (Brown), presentation: short names.

 	Other: bigger tagsets – only positional tags, size: up to 10k.

 	Tagging inside morphology: first, find the right tag, then the morphological categories: [image: A+ → T → (L,C1, ...,Cn)].
 	Doable for poor flection languages only.

 	Possibly only decrease the ambiguity for the purposes of tagging (i.e. morphology doesn’t have to be so
 precise).

 	Lemmatization: normally a part of morphology, sometimes (for searching) done separately.
 	Stem – simple code for Eng., no need of a dictionary, now out-dated.

 	Possible methods for morphology:
 	Word lists: lists of possible tags for each word form in a language
 	Works well for Eng. (avg. ca. 2.5 tags/word), not so good for Cze. (avg. ca. 12-15 tags/word).

 	Direct coding: splitting into morphemes (problem: split and find possible combinations)

 	Finite State Machinery (FSM)

 	CFG, DATR, Unification: better for generation than analysis

Finite State Machinery

Finite-State-Automata

	Smarter word form lists: compression of a long word list into a compact automaton.
 	Trie + Grammar information, minimize the automaton (automaton reduction)

 	Need to minimize the automaton & not overgenerate

 Two-Level-Morphology

	phonology + morphotactics, two-level rules, converted to FSA

 	solves e.g. Eng. doubling (stopping), Ger. umlaut, Cze. “ský” –>pl. “čtí” etc.

 	Finite State Transducer: an automaton, where the input symbols are tuples
 	run modes: check (for a sequence of pairs, gives out Y/N) + analysis (computes the “resolved” (upper)
 member of the pair for a sequence of “surface” symbols) + synthesis (the other way round)

 	used mostly for analysis

 	ususaly, one writes small independent rules (watch out for collisions), one FST for one rule – they’re run in
 parallel and all must hold

 	zero-symbols, one side only, check for max. count for a language

 	we may eliminate zero-symbols using ordinary FSA on lexicon entries (upper layer alphabet; prefixes:
 according to them, the possible endings are treated specially)

 	FSTs + FSAs may be combined, concatenated; the result is always an FST

 Two-level morphology: analysis

	initialize paths [image: P := {}]

 	read input surface symbols, one at a time, repeat (this loop consumes one char of the input):
 	at each symbol, until max. consecutive zeroes for given language reached, repeat (this loop just adds one possible
 zero):
 	generate all lexical (upper-level) symbols possibly corresponding to zero (+all possible zeroes on surface)

 	prolong all paths in [image: P] by all such possible [image: (x : 0)] pairs (big expansion)

 	check each new path extension against the phonological FST and lexical FSA (lexical symbols only),
 delete impossible path prefixes.

 	generate all possible lexical symbols (get from all FSTs) for the current input symbol, create pairs

 	extend all paths with the pairs

 	check all paths (next step in FST/FSA) and delete the impossible ones

 	collect lexical “glosses” from all surviving paths

Rule-Based Tagging

 	Rules using: word forms/tags/tag sets for context and current position, combinations

 	If-then / regular expression style (blocking negative)

 	Implementation: FSA, for all rules – intersection

 	algorithm ˜ similar to Viterbi (dynamic programming: if the FSA rejects a path, throw it away)

 	May even work, sometimes does not disambiguate enough

 	Tagging by parsing: write rules for syntactic analysis and get morphological analysis as a by-product
 	in a way, this is the linguistically correct approach

 	better, cleaner rules

 	more difficult than tagging itself, nobody has ever done it right

HMM Tagging

 	probabilistic methods, also applies to feature-based

 	noisy channel: input (tags) -> output (words), goal: discover channel input given the output.
 	[image: p(T)
p(T|W) = p(W |T)⋅p(W)], [image: argmaxT p(T|W) = argmaxT p(W |T)p(T)].

 	two models – simplification:
 	tags depend on limited history (4-5 grams)

 	word depends on tag only (1 gram!)

 	almost the general HMM
 	output words emitted by states (not arcs), states are [image: (n− 1)]-tuples of tags for an [image: n]-gram tag model

 	[image: (S,s0,Y,PS,PY)] – set of states, initial state, output alphabet (words), set of prob. distributions of
 transitions, set of prob. distributions for emissions

 	supervised learning: use MLE, smoothing:
 	p(w|t) – “add 1” for all possible tag+word pairs using a predefined dictionary (i.e. some 0’s kept:
 p(word|impossible-tag) = 0)

 	p(t|context) – linear interpolation, up to uniform (as for language model)

 	old and simple, but still accurate enough (only slower than e.g. neuron networks)

 	may be trained even with unsupervised data: unambiguous words help get the disambiguation for the others
 (improvement depends on language and tagset)
 	Baum-Welch algorithm, minimizing the entropy; use heldout data

 	training always decreases the entropy, smoothing increases it again (in case of no bigger tagged corpus
 available, it’s a good step to try; supervised is always better)

 	Out-of-Vocabulary
 	no lists of possible tags

 	try all / open class tags (good for non-flective languages), or:

 	try to guess possible tags based on suffix/ending or both ends of the word (e.g. for Cze. – first 3 and last 8
 letters) – train the classifier using rare words from the training data only!

 	Running the tagger
 	Viterbi, remember to handle unknown words, or:

 	assign always the best tag at each word, but consider all possibilities for previous tags; introduces some
 errors, but might get better accuracy

Transformation-Based Tagging

 	Not noisy channel, not probabilistic, but statistical – uses training data (combination of
 supervised/unsupervised), learning rules of type [image: context+ tag1 : tag1 → tag2]

 	criterion: accuracy – “objective function”

 	training: stepwise greedy-select
 	iterate: pre-anotate using current rules (intermediate data), select the rule from the pool of possible ones
 (from templates) that contributes best to the improvement of the error rate

 	stopping criterion: no or too small improvement possible; prone to overtraining!

 	heldout possible (afterwards, remove rules that degrade performance on heldout data)

 	rule types: context, lexical (looks at parts of the word)
 	application of the rules – left-to-right (a rule may be applied on part of its output) / delayed

 	improved version: Fast-TBL(Transformation-Based Learning), there’s no parallelized version

 	old method (90’s – was the best one), faster than HMM

 	tested for Cze. in the late 90’s, not very good results, too many rules – uncomputable (no way to parallelize
 it, the rules are weird in the beggining)

 	may be used e.g. for named entity recognition (less rules, more effective)

 	tagger: input = untagged data + rules from the learner
 	applies the rules one-by-one to all the data –> creates [image: n] iterations of intermediate data, the last one of
 which is the output

 	n-best modification (criterion: accuracy + number of tags per word), unsupervised modification (use only unambiguous
 words for evaluation)

That’s more than sneisble! That’s a great post!

 6IE1X3 cxlcxqqmlidk

Tagger Evaluation

 	A must: Test data (S), previously unseen, change frequently if possible

 	Formally: Out(w) / True(w) – for a given word
 	Errors(S) = [image: ∑
 |Si=|1 δ(Out (wi) ⁄= True(wi))]

 	Correct(S) = [image: ∑ |S| δ(True(wi) ∈ Out(wi))
 i=1]

 	Generated(S) = [image: ∑ |S|
 i=1|Out(wi)|] – how many outputs the tagger produced (sum over all data)

Metrics

	Error rate: Err(S) = Errors(S) / |S|

 	Accuracy: Acc(S) = 1 — Err(S)

 	Multiple / no output:
 	Recall: R(S) = Correct(S) / |S| – must select the right one (possibly among others)

 	Precision: P(S) = Correct(S) / Generated(S) – against too much noise

 	no way to improve P + R at the same time, but also no way to tell what’s better (depends on the application:
 Google – P, Medical test – R)
 	systems with a big difference in P/R are (empirically) worse

 	F-Measure: [image: 1
F = -αP+1−Rα], usually [image: 2PR
F = R+P-] (for [image: α = 0.5])

24.2 Parsing

Chomsky Hierarchy

	Type 0 Grammars/Languages – [image: α → β], where [image: α,β] are any strings of nonterminals

 	Context-Sensitive Grammars/Languages – [image: αX β → αγβ], where [image: X] is a nonterminal, [image: α,β, γ] any string of
 terminals and nonterminals (and [image: γ] must not be empty)

 	Context-Free Grammars/Languages – [image: X → γ], where [image: X] is a nonterminal and [image: γ] is any string of terminals
 and nonterminals

 	Regular Grammmars/Languages – [image: X → αY], where [image: X,Y] are nonterminals and [image: α] a string of terminals,
 [image: Y] might be missing

 Chomsky’s Normal Form

	for CFG’s – each CFG convertible to normal form

 	rules only [image: A → BC] (two nonterminals), [image: A → γ] (one terminal), [image: S → ε] (empty string)

 Parsing grammars

	Regular Grammars – FSA, constant space, linear time

 	CFG – widely used for surface syntax description of natural languages, needed: stack space, [image: O(n3)] time –
 CKY/CYK algorithm

Shift-Reduce CFG Parsing

 	CFG with no empty rules ([image: N → ε]) – any CFG may be converted; recursion is OK

 	Bottom-up, construction of a push-down automaton (non-deterministic); delay rule acceptance until all of it is
 parsed

 	Asymptotically slower than CKY, but fast for usual grammars

 	Builds upon a state parsing table ˜ graph, edges = transitions (defined by one terminal or nonterminal
 symbol)
 	each state: a special function telling if we output the rule number (even more rules – ambiguity) – this is
 what separates a shift-reduce parser from an FSA

 	lex/yacc / flex/bison – shift-reduce parser generators

Table construction – dot mechanism

	dots = remember where we are in all the rules which possibly could go through this set, used only for table
 construction

	take the starting rule and add it to the 1st state (put all rules with the starting symbol on left-hand side into
 the 1st state, mark the dot at the beginning of the right-hand side of all of them)

 	state expansion: for all nonterminals right after the dot in any rule in this state, add the rewriting rules (in which
 the given nonterminal is on the left-hand side) into this state (and do this recursively until there are no more
 nonterminals that have not been expanded)

 	construction of following states: for each terminal / nonterminal after the dot, create a new state (if there are
 several rules for the same symbol, create only one state over the transition for this symbol)

 	into the new state: add all the rules with the transition symbol just after the dot and move the dot after it +
 perform state expansion

 	reduction states: if there is a rule with the dot at the end in the state, this state is a so-called reduction-state –
 in this state, the rule that caused the possibility of moving forward shall be printed (such rule has no expansions
 –> this leads to finish)

 	merge identical states: if the created state has the same rules (with dots at the same positions) as another state,
 merge the two (otherwise this would never finish for a recursive grammar; merge only after the whole state has
 been created!)

	problems:
 	shift-reduce conflict – a state is ambiguous (there is a rule with the dot at the end + some rules with dots in
 the middle ˜ state may be reductional, but doesn’t have to) – this leads to backtracking, ambiguous parses

 	reduce-reduce conflict – another kind of ambiguity (more different rules with dot at the end)

 	the ambiguity does not occur for special kind of grammars – [image: LR (n)]: for bottom-up parsing, we
 only need to look [image: n] symbols ahead to prevent backtracking, [image: LR (0)] never get a conflict in a
 table
 	there’s no simple algorithm for obtaining the [image: n] for which a given grammar is [image: LR(n)], but we may
 try for all [image: n]’s

 	the algorithm complexity copies the complexity of the grammar – it’s only expensive at the points of
 ambiguity

 Parsing

	using parsing stack for states and backtrack stack for whole parser configurations at the points of ambiguity
 	backtracking may be implemented in such a way that only the position in the parsing stack and the input
 need to be stored on the backtrack stack

	we have an empty backtrack stack, the 1st state on the parsing stack and the original string at the input

 	from a shift state, follow the transition using the input symbol:

 	if there is no such transition and there’s nothing on the backtrack stack, FAIL; otherwise take something
 out of the backtrack stack – keep the stack saved if there still are more possibilities to follow!)

 	if we find the transition, eat one symbol from the input, follow it to the new state and put the state on the
 parsing stack

 	if we are in a reduce state:
 	remove as many elements from the parsing stack as there are on the right-hand side of the rule we’re
 reducing over

 	put the nonterminal from the left-hand side of the rule on the input

 	for conflicts: follow the first path + save the current configuration to the backtrack stack

 	PASS condition: empty parsing stack and end of input (possibly continue looking for some other parses if there’s
 something on the backtrack stack)

Probabilistic CFG

 	relations among mother & daughter nodes in terms of derivation probability

 	probability of a parse tree: [image: ∏n
p(T) = i=1 p(r(i))], where [image: p(r(i))] is a probability of a rule used to generate the sentence
 of which the tree T is a parse
 	probability of a string is not as trivial, as there may be many trees resulting from parsing the string:
 [image: p(W) = ∑n p(T)
 j=1 j], where [image: T
 j]’s are all possible parses of the string W.

 	assumptions (very strong!):
 	independence of context (neighboring subtrees)

 	independence of ancestors (upper levels)

 	place independence (regardless where the rule appears in the tree) ˜ similar to time invariance in HMM

 	probability of a rule – distribution [image: r(i) : A → α] ˜ [image: ∑
0 ≤ p(r) ≤ 1; r∈{A→...}p(r) = 1]	may be estimated by MLE from a treebank following a CFG grammar: counting rules & counting
 non-terminals

 	inside probability: [image: βN(p,q) = p(N → ⋆ wpq)] (probability that the nonterminal [image: N] generates the part of the sentence
 [image: wp ...wq])
 	for CFG in Normal Form may be computed recursively:
 [image: ∑ ∑q− 1
βN (p,q) = A,B d=pp(N → A B)βA(p,d)βB (d + 1,q)]

Computing string probability – Chart Parsing (CYK algorithm)

	create a table [image: n ×n], where [image: n] is the length of the string

 	initialize on the diagonal, using [image: N → α] rules (tuples: nonterminal + probability), compute along the diagonal towards
 the upper right corner
 	fill the cell with a nonterminal + probability that the given part of the string, i.e. row = from, col = to, is
 generated by the particular rule

 	consider more probabilities that lead to the same results & sum them (here: for obtaining the probability
 of a string, not parsing)

 	for parsing: need to store what was the best (most probable) tree – everything is computable from the table, but it’s
 slow: usually, you want a list of cells / rules that produced this one
 	if the CFG is in Chomsky Normal Form, the reverse computation is much more effective

External links

 	http://ufal.mff.cuni.cz/~novak/presentPraha/ — slides in Czech

 	http://nlp.stanford.edu/fsnlp/pcfg/fsnlp-pcfg-slides.pdf — slides in English

Statistical Parsing

 	parsing model: [image: p(s|W) = p(pW(W,s))-= pp((Ws))] since [image: p(W,s) = p(s)] (where [image: s] is a parse and [image: W] the corresponding string
 – a parse defines a sentence!)
 	therefore: [image: argmaxsp (s|W) = argmaxsp(s)] – we just select the most probable parse

 	similar to language model; we don’t consider trees, but all the possible parses

Parser Creation

	extract (all used) rules from a treebank

 	convert the grammar to the normal form

 	apply this back to the treebank (keep track of which rules were affected by the conversion)

 	get the counts of the rules –> probability

 	smoothen

 Smoothing

	the extracted rules cover an infinite number of sentences, but certainly not the whole language

 	add poor (missing) rules – get all possible combinations on the right side
 	but ensure their probability is really very low!

 	there are many ways of smoothing
 	e.g. tie several probabilities to one: [image: B → N V] –> split to first and second nonterminal: [image: p(B → N ⋆)],
 then: [image: p(B → N V) = p(B → N ⋆) ⋅p(V |N)] (only V following N on the right-hand side of any rule,
 regardless of the left-hand side)

 	or, use some linear combination of similar tied probabilities

 	may be combined with the original ones before smoothing

 	the smoothing is often tuned on data, the best way is selected according to the performance

 	if we don’t use Chomsky’s Normal Form, we may have much more sofisticated ways of smoothing, perhaps even reflecting
 the linguistic properties of the language, but it’ll slow down the process

 Lexicalization

	obtain more distinct nonterminals: use lexicalized parse tree (˜ dependency tree + phrase labels; no lexicalization needed
 for dep. trees)
 	process of filling in words that were originally only on the terminal nodes – so that the word is taken from
 the head of the phrase

	pre-terminals (right above the leaves): assign the word below

 	recursive step (up one level – bottom-up): select one node and copy it up (the “more important one”, eg. the
 preposition for PP, the noun for NP; there are no clean rules, it’s a linguistic problem)

	increases the number of rules (up to 100k), but helps – the smoothing must be very precise (e.g. using the non-lexicalized
 distribution)
 	particular words are important for the parsing of the sentence –> CFG development paradigm

 	it’s possible to use POS-tags with the words, or POS-tags only

 	conditional probabilities: there are too many rules, the data are sparse –> we need to simplify – assumptions:
 	total independence ([image: p(αB (headB)γ...|A (headA)) = p(α|A (headA)) ⋅p(B (headB)|A (headA))...]) is too
 strong, too inaccurate

 	best known heuristics – decomposition: split the right side of the rule into head + left-of-head +
 right-of-head
 	technical terminal STOP at both sides of the head (?)

 	[image: pH(H (headA)|A(headA))], [image: pL(Li(li)|A(headA),H)], [image: pR (Ri(ri)|A(headA),H)]

 	more conditioning – distance: absolute is non-zero ? path goes over verb ? over commas ?

 	other: complement/adjunct, subcategorization (?)

 Remarks

	parsing is still not solved properly, the results are not sufficient

Dependency parsing

 	until 2005, done via phrase-tree parsing, the trees were then converted

 	McDonald’s Parser

 	result: a tree – each word has its parent (or is root)

 	initialize: make a total graph, where each edge is rated with a probability (using a perceptron) + find the
 maximum spanning tree

Parsing Evaluation

Dependency parser metrics:

	dependency recall: [image: RD = Correct(D)∕|S|], where Correct(D) is the number of correct dependencies (correct
 head / marked root), |S| is the size of the test data in words

 	dependency precision: if output is not a tree – [image: PD = Correct(D)∕Generated(D)], where Generated(D) is the
 number of output dependencies

 Parse tree metrics:

	number of nonterminals may not be the same as in the “truth” –> more complicated

 	crossing brackets measure: number of crossing brackets between the truth and the result

 	labeled precision/recall – usual computation using bracket labels (phrase markers)
 	the bigger label coverage, the better – recall

 	the less brackets, the better – precision

statnice_24_Statnice_I3_Automaticka_analyza_jazyka5x.png
(0]

statnice_24_Statnice_I3_Automaticka_analyza_jazyka6x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka3x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka4x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka1x.png
At 5 2L.C1.C....Cn) 4 T

statnice_24_Statnice_I3_Automaticka_analyza_jazyka2x.png
AT =T = (L. Cy.....C,)

statnice_24_Statnice_I3_Automaticka_analyza_jazyka0x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka49x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka51x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka50x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka53x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka7x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka9x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka52x.png
Anipg) =Y 45

PN = A B)3a(p, d)3s(d +1,q)

statnice_24_Statnice_I3_Automaticka_analyza_jazyka8x.png

cover_image.jpg
Statnice 24 I3 Automaticka
analyza jazyka

Michalisek, Rajjo, Stevko, Tuetschek
& anonymous contributors.

statnice_24_Statnice_I3_Automaticka_analyza_jazyka44x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka43x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka46x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka45x.png
p(W)

=3 pT;)

statnice_24_Statnice_I3_Automaticka_analyza_jazyka48x.png
0=plr) =1 3 cran yplr

statnice_24_Statnice_I3_Automaticka_analyza_jazyka47x.png
rii

A—=a

statnice_24_Statnice_I3_Automaticka_analyza_jazyka60x.png
argmax_p(s/ W

argmax_p(s)

statnice_24_Statnice_I3_Automaticka_analyza_jazyka59x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka62x.png
p(B — N *)

statnice_24_Statnice_I3_Automaticka_analyza_jazyka61x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka20x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka64x.png
pla Blhead 5

o Alhead y) - plBlhead) Alhead 4)

statnice_24_Statnice_I3_Automaticka_analyza_jazyka19x.png
o — 3

statnice_24_Statnice_I3_Automaticka_analyza_jazyka63x.png
pB—=NV)=p(B—= N %)-plV N)

statnice_24_Statnice_I3_Automaticka_analyza_jazyka11x.png
context + tag, :tag, — tag,

statnice_24_Statnice_I3_Automaticka_analyza_jazyka55x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka10x.png
(S, 50, Y, Ps. Py)

statnice_24_Statnice_I3_Automaticka_analyza_jazyka54x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka13x.png
Y15 s(Out(w;) # True(w,))

statnice_24_Statnice_I3_Automaticka_analyza_jazyka57x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka12x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka56x.png
pls|w) = Bt
B = oo
o

statnice_24_Statnice_I3_Automaticka_analyza_jazyka15x.png
S5 JOout ()|

statnice_24_Statnice_I3_Automaticka_analyza_jazyka14x.png
Y15 s(True(w;) € Out(w;))

statnice_24_Statnice_I3_Automaticka_analyza_jazyka58x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka17x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka16x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka18x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka69x.png
Correct (D) /Generated(D)

statnice_24_Statnice_I3_Automaticka_analyza_jazyka29x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka31x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka30x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka22x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka66x.png
p L) Alhead 4). H

'

statnice_24_Statnice_I3_Automaticka_analyza_jazyka21x.png
A T — oy

statnice_24_Statnice_I3_Automaticka_analyza_jazyka65x.png
pulH(head y) Alhead 4))

statnice_24_Statnice_I3_Automaticka_analyza_jazyka24x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka68x.png
Rp = Correct(D)/| S|

statnice_24_Statnice_I3_Automaticka_analyza_jazyka23x.png
o, 3,7y

statnice_24_Statnice_I3_Automaticka_analyza_jazyka67x.png
prlR(r;) Alhead 4),

H)

statnice_24_Statnice_I3_Automaticka_analyza_jazyka26x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka25x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka28x.png
A —0Y

statnice_24_Statnice_I3_Automaticka_analyza_jazyka27x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka40x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka39x.png
LR(0}

statnice_24_Statnice_I3_Automaticka_analyza_jazyka42x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka41x.png
LR(n)

statnice_24_Statnice_I3_Automaticka_analyza_jazyka33x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka32x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka35x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka34x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka37x.png
LR(n)

statnice_24_Statnice_I3_Automaticka_analyza_jazyka36x.png

statnice_24_Statnice_I3_Automaticka_analyza_jazyka38x.png

