
        
            
                
            
        

    
                                                                                                  
                                                                                                  
                                                                                                  
                                                                                                  
   Kapitola 24
Státnice I3: Automatická analýza jazyka

   24.1    Morphology & Tagging

     	Task,                                                         formally:                                                         [image: A+ →  T  ]
     (simplified), split morphology & tagging (disambiguation): [image: A+ → 2(L,C1,C2,...,Cn) → T  ]. Tagging must look at
     context.
     

     	Tagset: influenced by linguistics as well as technical decisions.
         	Tag ˜ n-tuple of grammar information, often thought of as a flat list.
         

         	Eng. tagsets ˜ 45 (PTB), 87 (Brown), presentation: short names.
         

         	Other: bigger tagsets – only positional tags, size: up to 10k.



     	Tagging inside morphology: first, find the right tag, then the morphological categories: [image: A+ → T →  (L,C1, ...,Cn)  ].
         	Doable for poor flection languages only.
         

         	Possibly only decrease the ambiguity for the purposes of tagging (i.e. morphology doesn’t have to be so
         precise).



     	Lemmatization: normally a part of morphology, sometimes (for searching) done separately.
         	Stem – simple code for Eng., no need of a dictionary, now out-dated.



     	Possible methods for morphology:
         	Word lists: lists of possible tags for each word form in a language
             	Works well for Eng. (avg. ca. 2.5 tags/word), not so good for Cze. (avg. ca. 12-15 tags/word).



         	Direct coding: splitting into morphemes (problem: split and find possible combinations)
         

         	Finite State Machinery (FSM)
         

         	CFG, DATR, Unification: better for generation than analysis




   
Finite State Machinery

Finite-State-Automata
     
	Smarter word form lists: compression of a long word list into a compact automaton.
         	Trie + Grammar information, minimize the automaton (automaton reduction)
         

         	Need to minimize the automaton & not overgenerate



   Two-Level-Morphology
     
	phonology + morphotactics, two-level rules, converted to FSA
     

     	solves e.g. Eng. doubling (stopping), Ger. umlaut, Cze. “ský” –>pl. “čtí” etc.
     

     	Finite State Transducer: an automaton, where the input symbols are tuples
         	run modes: check (for a sequence of pairs, gives out Y/N) + analysis (computes the “resolved”  (upper)
         member of the pair for a sequence of “surface” symbols) + synthesis (the other way round)
         

         	used mostly for analysis
         

         	ususaly, one writes small independent rules (watch out for collisions), one FST for one rule – they’re run in
         parallel and all must hold
         

         	zero-symbols, one side only, check for max. count for a language
         

         	we may eliminate zero-symbols using ordinary FSA on lexicon entries (upper layer alphabet; prefixes:
         according to them, the possible endings are treated specially)



     	FSTs + FSAs may be combined, concatenated; the result is always an FST

   Two-level morphology: analysis
     
	initialize paths [image: P := {} ]

     	read input surface symbols, one at a time, repeat (this loop consumes one char of the input):
         	at each symbol, until max. consecutive zeroes for given language reached, repeat (this loop just adds one possible
         zero):
             	generate all lexical (upper-level) symbols possibly corresponding to zero (+all possible zeroes on surface)
             

             	prolong all paths in [image: P  ] by all such possible [image: (x : 0)  ] pairs (big expansion)
             

             	check each new path extension against the phonological FST and lexical FSA (lexical symbols only),
             delete impossible path prefixes.



         	generate all possible lexical symbols (get from all FSTs) for the current input symbol, create pairs
         

         	extend all paths with the pairs
         

         	check all paths (next step in FST/FSA) and delete the impossible ones



     	collect lexical “glosses” from all surviving paths


   
Rule-Based Tagging

     	Rules using: word forms/tags/tag sets for context and current position, combinations
                                                                                                  
                                                                                                  
         	If-then / regular expression style (blocking negative)
         

         	Implementation: FSA, for all rules – intersection
         

         	algorithm ˜ similar to Viterbi (dynamic programming: if the FSA rejects a path, throw it away)
         

         	May even work, sometimes does not disambiguate enough



     	Tagging by parsing: write rules for syntactic analysis and get morphological analysis as a by-product
         	in a way, this is the linguistically correct approach
         

         	better, cleaner rules
         

         	more difficult than tagging itself, nobody has ever done it right




   
HMM Tagging

     	probabilistic methods, also applies to feature-based
     

     	noisy channel: input (tags) -> output (words), goal: discover channel input given the output.
         	[image:                  p(T)
p(T|W ) = p(W |T )⋅p(W)  ], [image: argmaxT p(T|W ) = argmaxT p(W |T )p(T )  ].



     	two models – simplification:
         	tags depend on limited history (4-5 grams)
         

         	word depends on tag only (1 gram!)



     	almost the general HMM
         	output words emitted by states (not arcs), states are [image: (n− 1)  ]-tuples of tags for an [image: n  ]-gram tag model
         

         	[image: (S,s0,Y,PS,PY)  ] – set of states, initial state, output alphabet (words), set of prob.  distributions of
         transitions, set of prob. distributions for emissions



     	supervised learning: use MLE, smoothing:
         	p(w|t)  –  “add  1”  for  all  possible  tag+word  pairs  using  a  predefined  dictionary  (i.e.  some  0’s  kept:
         p(word|impossible-tag) = 0)
         

         	p(t|context) – linear interpolation, up to uniform (as for language model)



     	old and simple, but still accurate enough (only slower than e.g. neuron networks)
                                                                                                  
                                                                                                  
     

     	may be trained even with unsupervised data: unambiguous words help get the disambiguation for the others
     (improvement depends on language and tagset)
         	Baum-Welch algorithm, minimizing the entropy; use heldout data
         

         	training always decreases the entropy, smoothing increases it again (in case of no bigger tagged corpus
         available, it’s a good step to try; supervised is always better)



     	Out-of-Vocabulary
         	no lists of possible tags
         

         	try all / open class tags (good for non-flective languages), or:
         

         	try to guess possible tags based on suffix/ending or both ends of the word (e.g. for Cze. – first 3 and last 8
         letters) – train the classifier using rare words from the training data only!



     	Running the tagger
         	Viterbi, remember to handle unknown words, or:
         

         	assign always the best tag at each word, but consider all possibilities for previous tags; introduces some
         errors, but might get better accuracy




   
Transformation-Based Tagging

     	Not    noisy    channel,    not    probabilistic,    but    statistical    –    uses    training    data    (combination    of
     supervised/unsupervised), learning rules of type [image: context+ tag1 : tag1 → tag2  ]

     	criterion: accuracy – “objective function”
     

     	training: stepwise greedy-select
         	iterate: pre-anotate using current rules (intermediate data), select the rule from the pool of possible ones
         (from templates) that contributes best to the improvement of the error rate
         

         	stopping criterion: no or too small improvement possible; prone to overtraining!
         

         	heldout possible (afterwards, remove rules that degrade performance on heldout data)



     	rule types: context, lexical (looks at parts of the word)
         	application of the rules – left-to-right (a rule may be applied on part of its output) / delayed



     	improved version: Fast-TBL(Transformation-Based Learning), there’s no parallelized version
     

     	old method (90’s – was the best one), faster than HMM
                                                                                                  
                                                                                                  
         	tested for Cze. in the late 90’s, not very good results, too many rules – uncomputable (no way to parallelize
         it, the rules are weird in the beggining)
         

         	may be used e.g. for named entity recognition (less rules, more effective)



     	tagger: input = untagged data + rules from the learner
         	applies the rules one-by-one to all the data –> creates [image: n  ] iterations of intermediate data, the last one of
         which is the output



     	n-best modification (criterion: accuracy + number of tags per word), unsupervised modification (use only unambiguous
     words for evaluation)

That’s more than sneisble! That’s a great post!

   6IE1X3 <a href=“http://cxlcxqqmlidk.com/”>cxlcxqqmlidk</a>


   
Tagger Evaluation

     	A must: Test data (S), previously unseen, change frequently if possible
     

     	Formally: Out(w) / True(w) – for a given word
         	Errors(S) = [image: ∑
  |Si=|1 δ(Out (wi) ⁄= True(wi))  ]

         	Correct(S) = [image: ∑ |S| δ(True(wi) ∈ Out(wi))
  i=1  ]

         	Generated(S) = [image: ∑ |S|
  i=1|Out(wi)| ] – how many outputs the tagger produced (sum over all data)



Metrics
     
	Error rate: Err(S) = Errors(S) / |S|
     

     	Accuracy: Acc(S) = 1 — Err(S)
     

     	Multiple / no output:
         	Recall: R(S) = Correct(S) / |S| – must select the right one (possibly among others)
         

         	Precision: P(S) = Correct(S) / Generated(S) – against too much noise
         

         	no way to improve P + R at the same time, but also no way to tell what’s better (depends on the application:
         Google – P, Medical test – R)
             	systems with a big difference in P/R are (empirically) worse



         	F-Measure: [image:        1
F = -αP+1−Rα  ], usually [image:     2PR
F = R+P-  ] (for [image: α = 0.5  ])




   
24.2    Parsing

Chomsky Hierarchy
     
	Type 0 Grammars/Languages – [image: α → β  ], where [image: α,β  ] are any strings of nonterminals
     

     	Context-Sensitive Grammars/Languages – [image: αX β → αγβ  ], where [image: X  ] is a nonterminal, [image: α,β, γ  ] any string of
     terminals and nonterminals (and [image: γ  ] must not be empty)
     

     	Context-Free Grammars/Languages – [image: X →  γ  ], where [image: X  ] is a nonterminal and [image: γ  ] is any string of terminals
     and nonterminals
     

     	Regular Grammmars/Languages – [image: X → αY  ], where [image: X,Y  ] are nonterminals and [image: α  ] a string of terminals,
     [image: Y  ] might be missing

   Chomsky’s Normal Form
     
	for CFG’s – each CFG convertible to normal form
     

     	rules only [image: A → BC  ] (two nonterminals), [image: A → γ  ] (one terminal), [image: S → ε  ] (empty string)

   Parsing grammars
     
	Regular Grammars – FSA, constant space, linear time
     

     	CFG – widely used for surface syntax description of natural languages, needed: stack space, [image: O(n3)  ] time –
     CKY/CYK algorithm


   
Shift-Reduce CFG Parsing

     	CFG with no empty rules ([image: N →  ε  ]) – any CFG may be converted; recursion is OK
     

     	Bottom-up, construction of a push-down automaton (non-deterministic); delay rule acceptance until all of it is
     parsed
     

     	Asymptotically slower than CKY, but fast for usual grammars
     

     	Builds upon a state parsing table ˜ graph, edges = transitions (defined by one terminal or nonterminal
     symbol)
         	each state: a special function telling if we output the rule number (even more rules – ambiguity) – this is
         what separates a shift-reduce parser from an FSA



     	lex/yacc / flex/bison – shift-reduce parser generators

Table construction – dot mechanism
     
	dots = remember where we are in all the rules which possibly could go through this set, used only for table
     construction


                                                                                                  
                                                                                                  
     
	take the starting rule and add it to the 1st state (put all rules with the starting symbol on left-hand side into
     the 1st state, mark the dot at the beginning of the right-hand side of all of them)
     

     	state expansion: for all nonterminals right after the dot in any rule in this state, add the rewriting rules (in which
     the given nonterminal is on the left-hand side) into this state (and do this recursively until there are no more
     nonterminals that have not been expanded)
     

     	construction of following states: for each terminal / nonterminal after the dot, create a new state (if there are
     several rules for the same symbol, create only one state over the transition for this symbol)
     

     	into the new state: add all the rules with the transition symbol just after the dot and move the dot after it +
     perform state expansion
     

     	reduction states: if there is a rule with the dot at the end in the state, this state is a so-called reduction-state –
     in this state, the rule that caused the possibility of moving forward shall be printed (such rule has no expansions
     –> this leads to finish)
     

     	merge identical states: if the created state has the same rules (with dots at the same positions) as another state,
     merge the two (otherwise this would never finish for a recursive grammar; merge only after the whole state has
     been created!)

	problems:
         	shift-reduce conflict – a state is ambiguous (there is a rule with the dot at the end + some rules with dots in
         the middle ˜ state may be reductional, but doesn’t have to) – this leads to backtracking, ambiguous parses
         

         	reduce-reduce conflict – another kind of ambiguity (more different rules with dot at the end)
         

         	the ambiguity does not occur for special kind of grammars – [image: LR (n)  ]: for bottom-up parsing, we
         only need to look [image: n  ] symbols ahead to prevent backtracking, [image: LR (0)  ] never get a conflict in a
         table
             	there’s no simple algorithm for obtaining the [image: n  ] for which a given grammar is [image: LR(n)  ], but we may
             try for all [image: n  ]’s



         	the algorithm complexity copies the complexity of the grammar – it’s only expensive at the points of
         ambiguity



   Parsing
     
	using parsing stack for states and backtrack stack for whole parser configurations at the points of ambiguity
         	backtracking may be implemented in such a way that only the position in the parsing stack and the input
         need to be stored on the backtrack stack




     
	we have an empty backtrack stack, the 1st state on the parsing stack and the original string at the input
     

     	from a shift state, follow the transition using the input symbol:
                                                                                                  
                                                                                                  
         	if there is no such transition and there’s nothing on the backtrack stack, FAIL; otherwise take something
         out of the backtrack stack – keep the stack saved if there still are more possibilities to follow!)
         

         	if we find the transition, eat one symbol from the input, follow it to the new state and put the state on the
         parsing stack



     	if we are in a reduce state:
         	remove as many elements from the parsing stack as there are on the right-hand side of the rule we’re
         reducing over
         

         	put the nonterminal from the left-hand side of the rule on the input



     	for conflicts: follow the first path + save the current configuration to the backtrack stack
     

     	PASS condition: empty parsing stack and end of input (possibly continue looking for some other parses if there’s
     something on the backtrack stack)


   
Probabilistic CFG

     	relations among mother & daughter nodes in terms of derivation probability
     

     	probability of a parse tree: [image:       ∏n
p(T ) =  i=1 p(r(i))  ], where [image: p(r(i))  ] is a probability of a rule used to generate the sentence
     of which the tree T is a parse
         	probability of a string is not as trivial, as there may be many trees resulting from parsing the string:
         [image: p(W ) = ∑n  p(T )
         j=1   j  ], where [image: T
 j  ]’s are all possible parses of the string W.



     	assumptions (very strong!):
         	independence of context (neighboring subtrees)
         

         	independence of ancestors (upper levels)
         

         	place independence (regardless where the rule appears in the tree) ˜ similar to time invariance in HMM



     	probability of a rule – distribution [image: r(i) : A → α  ] ˜ [image:             ∑
0 ≤ p(r) ≤ 1; r∈{A→...}p(r) = 1  ]	may  be  estimated  by  MLE  from  a  treebank  following  a  CFG  grammar:  counting  rules  &  counting
         non-terminals



     	inside probability: [image: βN(p,q) = p(N → ⋆ wpq)  ] (probability that the nonterminal [image: N  ] generates the part of the sentence
     [image: wp ...wq  ])
         	for         CFG         in         Normal         Form         may         be         computed         recursively:
         [image:          ∑     ∑q− 1
βN (p,q) =  A,B   d=pp(N → A B )βA(p,d)βB (d + 1,q)  ]



Computing string probability – Chart Parsing (CYK algorithm)
                                                                                                  
                                                                                                  
     
	create a table [image: n ×n  ], where [image: n  ] is the length of the string
     

     	initialize on the diagonal, using [image: N → α  ] rules (tuples: nonterminal + probability), compute along the diagonal towards
     the upper right corner
         	fill the cell with a nonterminal + probability that the given part of the string, i.e. row = from, col = to, is
         generated by the particular rule
         

         	consider more probabilities that lead to the same results & sum them (here: for obtaining the probability
         of a string, not parsing)



     	for parsing: need to store what was the best (most probable) tree – everything is computable from the table, but it’s
     slow: usually, you want a list of cells / rules that produced this one
         	if the CFG is in Chomsky Normal Form, the reverse computation is much more effective




   
External links

     	http://ufal.mff.cuni.cz/~novak/presentPraha/ — slides in Czech
     

     	http://nlp.stanford.edu/fsnlp/pcfg/fsnlp-pcfg-slides.pdf — slides in English


   
Statistical Parsing

     	parsing model: [image: p(s|W ) = p(pW(W,s))-= pp((Ws))  ] since [image: p(W,s) = p(s)  ] (where [image: s  ] is a parse and [image: W  ] the corresponding string
     – a parse defines a sentence!)
         	therefore: [image: argmaxsp (s|W ) = argmaxsp(s)  ] – we just select the most probable parse
         

         	similar to language model; we don’t consider trees, but all the possible parses



Parser Creation
     
	extract (all used) rules from a treebank
     

     	convert the grammar to the normal form
     

     	apply this back to the treebank (keep track of which rules were affected by the conversion)
     

     	get the counts of the rules –> probability
     

     	smoothen

   Smoothing
     
	the extracted rules cover an infinite number of sentences, but certainly not the whole language
     

     	add poor (missing) rules – get all possible combinations on the right side
         	but ensure their probability is really very low!



     	there are many ways of smoothing
         	e.g. tie several probabilities to one: [image: B →  N V  ] –> split to first and second nonterminal: [image: p(B → N  ⋆)  ],
         then:  [image: p(B →  N V ) = p(B → N ⋆) ⋅p(V |N )  ]  (only  V  following  N  on  the  right-hand  side  of  any  rule,
         regardless of the left-hand side)
         

         	or, use some linear combination of similar tied probabilities
         

         	may be combined with the original ones before smoothing



     	the smoothing is often tuned on data, the best way is selected according to the performance
     

     	if we don’t use Chomsky’s Normal Form, we may have much more sofisticated ways of smoothing, perhaps even reflecting
     the linguistic properties of the language, but it’ll slow down the process

   Lexicalization
     
	obtain more distinct nonterminals: use lexicalized parse tree (˜ dependency tree + phrase labels; no lexicalization needed
     for dep. trees)
         	process of filling in words that were originally only on the terminal nodes – so that the word is taken from
         the head of the phrase




     
	pre-terminals (right above the leaves): assign the word below
     

     	recursive step (up one level – bottom-up): select one node and copy it up (the “more important one”, eg. the
     preposition for PP, the noun for NP; there are no clean rules, it’s a linguistic problem)

	increases the number of rules (up to 100k), but helps – the smoothing must be very precise (e.g. using the non-lexicalized
     distribution)
         	particular words are important for the parsing of the sentence –> CFG development paradigm



     	it’s possible to use POS-tags with the words, or POS-tags only
     

     	conditional probabilities: there are too many rules, the data are sparse –> we need to simplify – assumptions:
         	total independence ([image: p(αB (headB)γ...|A (headA)) = p(α|A (headA )) ⋅p(B (headB)|A (headA))...  ]) is too
         strong, too inaccurate
                                                                                                  
                                                                                                  
         

         	best known heuristics – decomposition: split the right side of the rule into head + left-of-head +
         right-of-head
             	technical terminal STOP at both sides of the head (?)
             

             	[image: pH(H (headA )|A(headA))  ], [image: pL(Li(li)|A(headA),H )  ], [image: pR (Ri(ri)|A(headA),H )  ]



         	more conditioning – distance: absolute is non-zero ? path goes over verb ? over commas ?
         

         	other: complement/adjunct, subcategorization (?)



   Remarks
     
	parsing is still not solved properly, the results are not sufficient


   
Dependency parsing

     	until 2005, done via phrase-tree parsing, the trees were then converted
     

     	McDonald’s Parser
     

     	result: a tree – each word has its parent (or is root)
     

     	initialize: make a total graph, where each edge is rated with a probability (using a perceptron) + find the
     maximum spanning tree


   
Parsing Evaluation

Dependency parser metrics:
     
	dependency recall: [image: RD  = Correct(D)∕|S| ], where Correct(D) is the number of correct dependencies (correct
     head / marked root), |S| is the size of the test data in words
     

     	dependency precision: if output is not a tree – [image: PD = Correct(D )∕Generated(D)  ], where Generated(D) is the
     number of output dependencies

   Parse tree metrics:
     
	number of nonterminals may not be the same as in the “truth” –> more complicated
     

     	crossing brackets measure: number of crossing brackets between the truth and the result
     

     	labeled precision/recall – usual computation using bracket labels (phrase markers)
         	the bigger label coverage, the better – recall
         

         	the less brackets, the better – precision
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