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Abstract 
In this paper, three types of chess endgames were studied 
and three layer feedforward neural networks were applied 
to learn the hiden rules in chess endgames. The pmpose 
of this paper is to convert the symbolic rules of chess 
endgames into numerical information that neural networks 
can learn. The neural networh have been proved eficient 
in learning and playing some simple cases of chess 
endgames. 

I. Introduction 

It has been a trend since the 1980s to develop some robots 
or computers to play games with human being. Among all 
the games, chess got most enthusiasm. This is not only 
because chess is one of the most popular games all over 
the world, but also due to the reason that it is a game 
requiring high intelligence. Neural networks may be 
applied well in various practical areas, e.g. pattern 
recognition, signal processing, etc [l] - [3]. It is 
appropriate to use neural networks to solve some 
intelligent problems because neural networks are parallel, 
distributed systems with high fault-tolerance. In this 
paper, the authors tried to use feedfomard neural networks 
to learn the patterns in chess games. However, it is almost 
impossible to train a neural network to remember all 
changes and traps in a chess game since chess as a whole 
is too complex even for human’s brain. Therefore, only 
some simplest cases of the end games, whose complete 
knowledge is available, were considered. The aim of the 
paper is to transform the end games infinmation into 
neural network structure. 

JI. Examples of end games 

Fig. 1 shows some examples of chess end games. As it 
can be seen from Fig. 1, a chessboard consists of 8 
vertical files and 8 horizontal ranks. The ranks are labeled 
from ‘1’ to ‘8’ while the files are labeled from ‘a’ to ‘h’. 
Just like a point in Cartesian geometry, the location and 
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moves of pieces in a chessboard can be totally expressed in 
terms of ranks and files. For example, chessboard 
condition shown in Fig. l(a) can be expressed by ‘WK e3, 
W R  b2, and BK f7’, where ‘W’, ‘B’, ‘K ,  ‘R’ represent 
white, black, king and rook respectively. The expression 
‘R b2-b3’ means to move the white rook one square 
upwards. Some abbreviations used in this paper are ‘Q’ 
for queen, ‘P’ for pawn, ‘K’ for king, ‘R’ for rook, ‘W’ for 
white and ‘B’ for black. Three types of end games, i.e., 
single rook vs. lone king, single queen vs. lone king, and 
single pawn vs. lone king, depicted as Fig. l(a), (b), and 
(c) respectively, were studied in this paper. In each type, 
there are always three pieces on the chessboard. For 
simplification, white side is set to be stronger than the 
black side. 

( 4  @) (c) 
Fig. 1 Examples of chess end games 

In a chess game, players select the next move according to 
the current condition of the chessboard. Generally, there 
are multiple choices for each move. Expressed in 
mathematical ways, if the current condition and the next 
move are considered to be input and output of a model, 
this model actually completes a one-to-multiple mapping 
process. It makes chess game very hard to learn, either by 
human or by computer. Fortunately, for some simplest end 
games, there exist the definite solutions which can simplie 
the playing to be a series of one-to-one mappings. It has 
been proved that for fmite games like chess, an optimal 
strategy can be constructed based on the set theoretic 
considerations [4], [5]. In the 1970s, these ideas resulted 
in the construction of comprehensive End game DataBase 
(EDB) which provides the supervisor for the trahbg of 
neural networks. 
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III. Neural networks used for chess end games 

1. Neural network for rook end games 

A. Neural Network structure 
The neural network used for rook end games is shown in 
Fig. 2. It is an all connected feedforward neural network 
with one hidden layer. The number of neurons in the 
hidden layer, which are not drawn to make the plot neat, is 
34. There are 18 nodes in the input layer, divided into 
three groups, each of which corresponds to the position of 
a particular piece. In the output layer there are 6 neurons. 
The white neuron in the output layer in Fig. 2 is used as a 
kinghook index. If this index is 1, the output of the other 
five neurons indicates a rook's move. Otherwise, the 
output of the other five neurons indicates a king's move. 
The black neurons show the direction in which a rook 
needs to move if the K/R index is 1. If the K/R index is 0, 
the output of these two neurons is always 01. The gray 
neurons have two functions. If the K/R index is 1, i.e., a 
rook's move, the output of these three neurons gives the 
squares a rook needs to move in the direction indicated by 
the black neurons. If the K/R index is 0, these three 
neurons show the direction in which the king moves. 

B. Construction of training data 
As it is known, the location of each piece can be totally 
descriid by its rank and file, both range from 1 to 8. 
Therefore, three digits ranging from 000 to 111 can be 
used to show the d f i l e  of a piece. The location of each 
piece needs only 6 digits to be totally expressed. On the 
output side, if the next move is the rook's move, three 
digits, changing fiom 001 to 11 1, are needed to show the 
squares a rook needs to move, which is a number between 
1 and 7. Another two digits are needed to show the 
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Fig. 2 NN structure for rook end games 

direction in which the rook wants to move. The 
conversion between these two digits and the direction is 
shown in Fig. 3(a). If the next move is moving the king, 
only three digits are needed to show the moving direction 
of the king, since a king can only move one square at a 
time in any direction. The conversion between these three 
digits and the moving directions of the king is shown in 
Fig. 3(b). The two digits that are used for indicating 
rook's moving direction are set to be 01 if a king is 
moving. Besides these digits, an extra digit is needed to 
indicate if the output is king's move or rook's move. 

01 010 

10 +oo l::*;:oo 101 111 

11 110 
(a) (b) 

Fig. 3 Conversion between directions 
and binary codes 

C. Training algorithm 
In this paper, a hybrid algorithm which combines both BP 
and random search was used to train the neural network to 
guarantee the global minimum of the error function [3]. 

Error 

Random search w7v 
---, 
--+ BPsearch. 

Fig. 4 Diagram of hybrid algorithm 

Fig. 4 shows a simple diagram of this algorithm. The basic 
idea of this algorithm is to use BP to find a local minimum, 
then in a range around t h i s  local minimum, randomly 
change the weight matrices until a smaller error function 
value is found. Based on these new weights, m BP 
algorithm again to find another local minimum. Continue 
th is  process until the global minimum is found. The 
random search range should be reduced during the search. 
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2. Neural network for queen end games 

A. Neural network structure 
The structure of neural network for queen end games is 

more complicated compared to the one used for rook end 
games. It is so because a queen can move in 8 directions 
instead of 4 in which a rook can move. As Fig. 5 shows, 
the input layer has 18 input nodes, corresponding to the 
current location of kings and white queen. The output 
layer has 7 neurons. The white neuron is used as IUQ 
index, three gray neurons indicate the squares a queen 
needs to move, and three black neurons show the direction 
in which white queen or king moves. The number of 
neurons in the hidden layer is 40. 

The neural network structure for pawn end games, 
however, is easier than the other two. It is so because in a 
chess game, both pawn and king can only move one square 
at a time, and a pawn can only move in the forward 
direction. The neural network structure for pawn end 
games is shown in Fig. 6. The input layer is same as that 
in Fig. 2 and Fig. 5. The output layer has only four 
neurons, indicating the direction of white king’s next 
move. There are 8 directions a king can move, resulting in 
nine choices for the position of the king on the chessboard 
in the next instance, i.e., 8 directions plus staying. If the 
output shows the king should stay, it amounts to that the 
pawn moves one square forward. The number of neurons 
in the hidden layer is 34. 

Output Layer 

Hidden Layer 

Input Layer 

Fig. 5 NN structure for queen end games 

B. Construction of training data 
The conversion of input data vectors is same as that in the 
rook end games. In the output data vectors, three digits are 
needed to indicate the direction of the queenking’s move. 
Both queen and king can move in 8 directions, and are 
encoded in a way following Fig. 3@). The other three 
digits are used to show the squares the piece moves. The 
moving squares could range from 001 (1) to 11 1 (7) if the 
queen is moving, and is always 001 (1) if the king is 
moving. Another digit is used as King/Queen index which 
can be 1 (queen’s move) or 0 (king’s move). 

C. Training algorithm 
The hybrid algorithm descrii  in section IIIlC was used 
to train this neural network. 

3. Neural neiwork forpawn endgames 
A. Nmal  network structure 
The pawn end games are the most complicated one among 
all three types of end games discussed in this paper [5]. 

Output Layer 
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Fig. 6 NN structure for pawn end games 

B. Construction of training data 
The input data vectors are same as those in rook end games 
and queen end games. Corresponding to the neural 
network structure described above, the target output data 
vectors have four digits. 8 possible directions are 
indicated by numbers fiom OOOO to 01 1 1, whose last three 
digits follow the rule shown in Fig. 3(b), number 1111 
indicates the king to stay, i.e., the pawn should move one 
square forward. 

C. Training algorithm 
The hybrid algorithm was used for pawn end games. 

IU. Simulation experiment and results 

There are two phases in the simulation experiments, 
training and verification. In the training phase, neural 
networks and the corresponding training data vectors are 
constructed in ways described in section IIJ. Hybrid 
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algorithm was applied to train the neural networks. In 
verification phase, the current chessboard conditions were 
sent to the trained neural networks, the output of neural 
networks shows the next move of pawn, queen, rook or 
king of the white side. 

1. Training 
To save the running time, in this paper, only 1000 input- 
output training vector pairs were chosen to train the neural 
network for each type of end games. 

Fig. 7 Training process of chess endgames with BP and 
hybrid algorithm 

Fig. 7 shows the process of the training. The mor 
function has the same definition as in [ 11. All curves have 
been pro-cessed with the fifth order w e  fitting. Results 
of using BP and the hybrid algorithm are drawn in the 
same plot. From this plot, it can be seen that for each type 
of end games, after about 35000 iterations, the error 
dropped below 0.01. The pawn end game has the fastest 
learning process while the rook end game is the slowest 
one. After learning, the error levels for all types of games 
are almost same. BP algorithm, on the other hand, got 
much worse results. In the training of each end game, the 
error stopped dropping at higher levels, meaning that the 
learning stopped at a local minimum. In this figure, the 
worst results by BP were drawn for purpose of 
comparison. 

moved the black king to a new location, then neural 
network indicated the next move based on the new 
chessboard condition. Follow this sequence until game 
over. All instances used for verification have been 
selected to train the neural networks. Each number of the 
output vector of neural networks is rounded to 0 or 1. The 
results proved that after training, neural networks can 
remember patterns by which they were trained and can 
give good results for the further applications. 

. 

JY. Conclusions 

In this paper, the chess end game database was encoded 
and neural networks were trained to learn the playing 
patterns. The simulation experiments showed good results. 
Compared to the previous work in this field, the flexibility 
and complexity of the chess endgames were expanded in 
this paper. We proved that using a single feedforward 
neural network, it is possible to store the complicated 
information hidden in chess games. 
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2. Ve~flcafion 
After training, neural networks were used to play some 
selected end games to verify the results of training. Each 
end game was played in a sequence between one particular 
neural network and the authors. More specifically, at first 
neural network indicates the move of the white side based 
on the current condition of the chessboard, and the authors 
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