
Trained Neural Networks Play Chess Endgames

Jie Si
IEEE Member, ACM member

Comsearch
Reston, VA 20191

Abstract
In this paper, three types of chess endgames were studied
and three layer feedforward neural networks were applied
to learn the hiden rules in chess endgames. The pmpose
of this paper is to convert the symbolic rules of chess
endgames into numerical information that neural networks
can learn. The neural networh have been proved eficient
in learning and playing some simple cases of chess
endgames.

I. Introduction

It has been a trend since the 1980s to develop some robots
or computers to play games with human being. Among all
the games, chess got most enthusiasm. This is not only
because chess is one of the most popular games all over
the world, but also due to the reason that it is a game
requiring high intelligence. Neural networks may be
applied well in various practical areas, e.g. pattern
recognition, signal processing, etc [l] - [3]. It is
appropriate to use neural networks to solve some
intelligent problems because neural networks are parallel,
distributed systems with high fault-tolerance. In this
paper, the authors tried to use feedfomard neural networks
to learn the patterns in chess games. However, it is almost
impossible to train a neural network to remember all
changes and traps in a chess game since chess as a whole
is too complex even for human’s brain. Therefore, only
some simplest cases of the end games, whose complete
knowledge is available, were considered. The aim of the
paper is to transform the end games infinmation into
neural network structure.

JI. Examples of end games

Fig. 1 shows some examples of chess end games. As it
can be seen from Fig. 1, a chessboard consists of 8
vertical files and 8 horizontal ranks. The ranks are labeled
from ‘1’ to ‘8’ while the files are labeled from ‘a’ to ‘h’.
Just like a point in Cartesian geometry, the location and

FZilun Tang
Department of Computer Science

University of Nevada, Reno
Reno, NV 89557

moves of pieces in a chessboard can be totally expressed in
terms of ranks and files. For example, chessboard
condition shown in Fig. l(a) can be expressed by ‘WK e3,
W R b2, and BK f7’, where ‘W’, ‘B’, ‘K , ‘R’ represent
white, black, king and rook respectively. The expression
‘R b2-b3’ means to move the white rook one square
upwards. Some abbreviations used in this paper are ‘Q’
for queen, ‘P’ for pawn, ‘K’ for king, ‘R’ for rook, ‘W’ for
white and ‘B’ for black. Three types of end games, i.e.,
single rook vs. lone king, single queen vs. lone king, and
single pawn vs. lone king, depicted as Fig. l(a), (b), and
(c) respectively, were studied in this paper. In each type,
there are always three pieces on the chessboard. For
simplification, white side is set to be stronger than the
black side.

(4 @) (c)
Fig. 1 Examples of chess end games

In a chess game, players select the next move according to
the current condition of the chessboard. Generally, there
are multiple choices for each move. Expressed in
mathematical ways, if the current condition and the next
move are considered to be input and output of a model,
this model actually completes a one-to-multiple mapping
process. It makes chess game very hard to learn, either by
human or by computer. Fortunately, for some simplest end
games, there exist the definite solutions which can simplie
the playing to be a series of one-to-one mappings. It has
been proved that for fmite games like chess, an optimal
strategy can be constructed based on the set theoretic
considerations [4], [5]. In the 1970s, these ideas resulted
in the construction of comprehensive End game DataBase
(EDB) which provides the supervisor for the trahbg of
neural networks.

0-7803-5529-6/99/$10.00 Q1999 IEEE 3730

III. Neural networks used for chess end games

1. Neural network for rook end games

A. Neural Network structure
The neural network used for rook end games is shown in
Fig. 2. It is an all connected feedforward neural network
with one hidden layer. The number of neurons in the
hidden layer, which are not drawn to make the plot neat, is
34. There are 18 nodes in the input layer, divided into
three groups, each of which corresponds to the position of
a particular piece. In the output layer there are 6 neurons.
The white neuron in the output layer in Fig. 2 is used as a
kinghook index. If this index is 1, the output of the other
five neurons indicates a rook's move. Otherwise, the
output of the other five neurons indicates a king's move.
The black neurons show the direction in which a rook
needs to move if the K/R index is 1. If the K/R index is 0,
the output of these two neurons is always 01. The gray
neurons have two functions. If the K/R index is 1, i.e., a
rook's move, the output of these three neurons gives the
squares a rook needs to move in the direction indicated by
the black neurons. If the K/R index is 0, these three
neurons show the direction in which the king moves.

B. Construction of training data
As it is known, the location of each piece can be totally
descriid by its rank and file, both range from 1 to 8.
Therefore, three digits ranging from 000 to 111 can be
used to show the d f i l e of a piece. The location of each
piece needs only 6 digits to be totally expressed. On the
output side, if the next move is the rook's move, three
digits, changing fiom 001 to 11 1, are needed to show the
squares a rook needs to move, which is a number between
1 and 7. Another two digits are needed to show the

output Layer

I Hidden Layer I

Input Layer

Fig. 2 NN structure for rook end games

direction in which the rook wants to move. The
conversion between these two digits and the direction is
shown in Fig. 3(a). If the next move is moving the king,
only three digits are needed to show the moving direction
of the king, since a king can only move one square at a
time in any direction. The conversion between these three
digits and the moving directions of the king is shown in
Fig. 3(b). The two digits that are used for indicating
rook's moving direction are set to be 01 if a king is
moving. Besides these digits, an extra digit is needed to
indicate if the output is king's move or rook's move.

01 010

10 +oo l::*;:oo 101 111

11 110
(a) (b)

Fig. 3 Conversion between directions
and binary codes

C. Training algorithm
In this paper, a hybrid algorithm which combines both BP
and random search was used to train the neural network to
guarantee the global minimum of the error function [3].

Error

Random search w7v
---,
--+ BPsearch.

Fig. 4 Diagram of hybrid algorithm

Fig. 4 shows a simple diagram of this algorithm. The basic
idea of this algorithm is to use BP to find a local minimum,
then in a range around t h i s local minimum, randomly
change the weight matrices until a smaller error function
value is found. Based on these new weights, m BP
algorithm again to find another local minimum. Continue
th is process until the global minimum is found. The
random search range should be reduced during the search.

373 1

2. Neural network for queen end games

A. Neural network structure
The structure of neural network for queen end games is

more complicated compared to the one used for rook end
games. It is so because a queen can move in 8 directions
instead of 4 in which a rook can move. As Fig. 5 shows,
the input layer has 18 input nodes, corresponding to the
current location of kings and white queen. The output
layer has 7 neurons. The white neuron is used as IUQ
index, three gray neurons indicate the squares a queen
needs to move, and three black neurons show the direction
in which white queen or king moves. The number of
neurons in the hidden layer is 40.

The neural network structure for pawn end games,
however, is easier than the other two. It is so because in a
chess game, both pawn and king can only move one square
at a time, and a pawn can only move in the forward
direction. The neural network structure for pawn end
games is shown in Fig. 6. The input layer is same as that
in Fig. 2 and Fig. 5. The output layer has only four
neurons, indicating the direction of white king’s next
move. There are 8 directions a king can move, resulting in
nine choices for the position of the king on the chessboard
in the next instance, i.e., 8 directions plus staying. If the
output shows the king should stay, it amounts to that the
pawn moves one square forward. The number of neurons
in the hidden layer is 34.

Output Layer

Hidden Layer

Input Layer

Fig. 5 NN structure for queen end games

B. Construction of training data
The conversion of input data vectors is same as that in the
rook end games. In the output data vectors, three digits are
needed to indicate the direction of the queenking’s move.
Both queen and king can move in 8 directions, and are
encoded in a way following Fig. 3@). The other three
digits are used to show the squares the piece moves. The
moving squares could range from 001 (1) to 11 1 (7) if the
queen is moving, and is always 001 (1) if the king is
moving. Another digit is used as King/Queen index which
can be 1 (queen’s move) or 0 (king’s move).

C. Training algorithm
The hybrid algorithm descrii in section IIIlC was used
to train this neural network.

3. Neural neiwork forpawn endgames
A. Nmal network structure
The pawn end games are the most complicated one among
all three types of end games discussed in this paper [5].

Output Layer

I Hidden Layer I

Input Layer

Fig. 6 NN structure for pawn end games

B. Construction of training data
The input data vectors are same as those in rook end games
and queen end games. Corresponding to the neural
network structure described above, the target output data
vectors have four digits. 8 possible directions are
indicated by numbers fiom OOOO to 01 1 1, whose last three
digits follow the rule shown in Fig. 3(b), number 1111
indicates the king to stay, i.e., the pawn should move one
square forward.

C. Training algorithm
The hybrid algorithm was used for pawn end games.

IU. Simulation experiment and results

There are two phases in the simulation experiments,
training and verification. In the training phase, neural
networks and the corresponding training data vectors are
constructed in ways described in section IIJ. Hybrid

3732

algorithm was applied to train the neural networks. In
verification phase, the current chessboard conditions were
sent to the trained neural networks, the output of neural
networks shows the next move of pawn, queen, rook or
king of the white side.

1. Training
To save the running time, in this paper, only 1000 input-
output training vector pairs were chosen to train the neural
network for each type of end games.

Fig. 7 Training process of chess endgames with BP and
hybrid algorithm

Fig. 7 shows the process of the training. The mor
function has the same definition as in [11. All curves have
been pro-cessed with the fifth order w e fitting. Results
of using BP and the hybrid algorithm are drawn in the
same plot. From this plot, it can be seen that for each type
of end games, after about 35000 iterations, the error
dropped below 0.01. The pawn end game has the fastest
learning process while the rook end game is the slowest
one. After learning, the error levels for all types of games
are almost same. BP algorithm, on the other hand, got
much worse results. In the training of each end game, the
error stopped dropping at higher levels, meaning that the
learning stopped at a local minimum. In this figure, the
worst results by BP were drawn for purpose of
comparison.

moved the black king to a new location, then neural
network indicated the next move based on the new
chessboard condition. Follow this sequence until game
over. All instances used for verification have been
selected to train the neural networks. Each number of the
output vector of neural networks is rounded to 0 or 1. The
results proved that after training, neural networks can
remember patterns by which they were trained and can
give good results for the further applications.

.

JY. Conclusions

In this paper, the chess end game database was encoded
and neural networks were trained to learn the playing
patterns. The simulation experiments showed good results.
Compared to the previous work in this field, the flexibility
and complexity of the chess endgames were expanded in
this paper. We proved that using a single feedforward
neural network, it is possible to store the complicated
information hidden in chess games.

Reference

1.

2.

3.

4.

5.

Looney C., Pattern Recognition Using Neural Networks,
Theory and Algorithms for Engineers and Scientists, Oxford
University Press, 1997.
Haykin S., Neural Networks, A Comprehensive Foundation,
Macmillan College publishing Company, 1994.
Baba N. et al, “A hybrid algorithm for finding the global
minimum of error function of neural networks and its
applications”, Neural Networks, Vol. 7, pp. 1253-1265,
1994.
Posthoff C., et al, “Neural network learning in a chess
endgame”, Proc. IJCNN, pp. 3420-3425,1994.

publications, Inc., 1987.
T m h S., The GUIW of Chess, p ~ . 9-76, Dover

2. Ve~flcafion
After training, neural networks were used to play some
selected end games to verify the results of training. Each
end game was played in a sequence between one particular
neural network and the authors. More specifically, at first
neural network indicates the move of the white side based
on the current condition of the chessboard, and the authors

3733

