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Abstract

Classical chess engines exhaustively explore moving
possibilities from a chess board position to decide what
the next best move to play is. The main component of a
chess engine is board evaluation function. In this article we
present a new method to solve chess endgames optimally
without using Brute-Force algorithms or endgame tables.
We propose to use Artificial Neural Network to obtain bet-
ter evaluation function for endgame positions. This method
is specifically applied to three classical endgames: King-
Bishop-Bishop-King, King-Rook-King, and King-Queen-
King. The empirical results show that the proposed learning
strategy is effective in wining against an opponent who of-
fers its best survival defense using Nalimov database of best
endgame moves.

1 Introduction
Nowadays, the promise and extraordinary potential of

the Artificial Neural Networks (ANN) in solving various
cognition problems have made them an appropriate ap-
proach for complex problem solving, such as the strategies
required in game playing. Two-player games, such as chess,
involve highly complex and non-linear intelligence, making
the game particularly a good area to demonstrate the ANN
as an approximation.

All today’s sophisticated two-playing programs use
some variants of the so called alpha-beta (α − β) search
algorithm. The name comes from a pruning technique
which substantially reduces the expanded game tree and
thus makes deeper searches feasible. The efficiency of α−β
search algorithm depends heavily on its evaluation function.
The game evaluation function is a key part in a chess engine.
It is composed of a long list of parameters [3] describing the
board positions and is obtained from extensive game expe-
riences. Therefore, evaluation function improvement can
help us to design more powerful chess engines.

The chess endgame is defined as the stage of the game
in which there are few pieces left on the board. One of

the objectives in chess engine studies is to play endgame
stage optimally in terms of the number of moves. To meet
this goal, chess engines employ endgame databases which
store the number of moves required to force checkmate for
all winning positions. The most commonly used database
is known as Nalimov tableset including optimal1 move for
every endgame position (database size increases with the
number of pieces). The database size, however, makes
searching within the set timely very complex.

An alternative to reduce the chess engine time complex-
ity is to aid the engine playing endgame positions subopti-
mally. The main idea is to employ ANN or other machine
learning techniques such as Genetic Programming (GP) to
solve chess endgames [1, 8, 10]. The suboptimality stems
from the fact that the proposed engine will not look into a
pre-defined table to copy the best move. The ANN is, how-
ever, trained according to features extracted from the board
and it tries to obtain the optimum number of moves leading
to the winning situation while the defender plays its best
game strategy.

The main purpose of this work is to develop an ANN
based on a previously defined set of board attributes. The
ANN output is only one single value showing the optimum
number of moves towards wining the game assuming the
other side plays the best game. Therefore, it can be used
as an evaluation function by the chess engine. We will ex-
plain how our chess learning strategy outperforms the ex-
isting techniques in terms of search tree time and space
complexity. The simulation results will also show that best
move prediction error is extremely improved compared to
the state-of-the-art chess endgame evaluation functions.

2 Background Review
2.1 Neural Network

Human brain information processing method is the stem
from which the concept of ANN originates. In the brain, it is

1The optimal move is the one that leads either the attacker to the quick-
est checkmate or the defender to the longest survival before checkmate or
stalemate.
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the network of neurons connected with axon and dendrites
which makes learning possible [9]. The point of contact
for neurons is called a synaps. ANN, too, has a network of
neurons where elements and weights connections are pro-
cessed. In the brain, the connections respond to axons and
the weights respond to the synapses.

Stimulating human brain analytical function, the ANNs
are capable of learning and recognizing non-linear and com-
plex relationships. The experimental knowledge is received,
stored and used by the ANNs in the shape of stable states or
maps embedded in networks, and when responding to input
variables, they are recalled. ANNs’ capability of solving
problems makes them suitable to lots of applications, as it
was recently used in Artificial Intelligence (AI) fields.

Neurons have two functioning roles in an ANN: sum-
ming the weighted inputs from different connections and
applying a transfer function to that sum [2]. The value taken
this way is then sent to other neurons which are usually ar-
ranged in layers. There, the input layer receives the real
world input and then forwards it, in the form of weighted
output, to the next layer. In order for the ANNs to adjust
the connection weights, ANNs should be trained by using
a training algorithm and training dataset. The reader is re-
ferred to [9, 2] further reading.

2.2 Chess Engines
The search algorithm attempts to find the best move ex-

ploring all moves from a position. Using the α−β algorithm
and an evaluation function, we try to compute the values of
tree leaves.

Finding and returning the maximum value (possible to
be gained by one side of the game if another side performs
the best move) can be achieved by the help of α − β prun-
ing. When a leaf is reached by this algorithm, the algorithm
evaluates the board position using its evaluation function.
The found value, then, tries to find the best move.

The evaluation function applied at the game tree leaves,
analyzes the position and by returning a numerical value in-
dicates the player holding a better position. In endgames,
due to expected and predictable limitations, we need
stronger evaluation functions. Needless to say that human
players play endgame much better than start and middle
game.

3 Learning-Based Chess Engines
In this section we review some other machine learning

techniques which have been used to solve endgame chess
positions.

Si and Tang [10] attempted to solve King-Rook-King
(KRK) endgame using ANN. Their objective was to predict
the best next move for a particular board position. White
king position, white rook and black king positions were

(a) black turn (b) white turn

Figure 1. Two instances of chess board posi-
tion for KRK endgame.

considered as ANN input features. The proposed ANN ap-
proach was evaluated by normalized error measured only
at trained stage. Although their method could significantly
reduce training error, our experience with real game indi-
cates that chess board position is not always an appropriate
choice to train the ANN efficiently.

Among various situations there are two major cases (Fig-
ure 1) in which changes in board position add more com-
plexity to the ANN prediction function:

• Figure 1(a) shows that if we change the position of
white rook to files b,c,g or h or if both kings are shifted
left or right the optimal value (the value is 6 here) and
the game strategy will not change. This is an exam-
ple of a many-to-one function making the prediction
complicated.

• In Figure 1(b) white should first secure its rook from
being captured by black king, e.g., moving it to file
a or h, then using its king towards wining the game.
Clearly, changing a rook position may drastically
change both the optimal value and the next best move,
i.e., causing spikes in the ANN function.

A number of attempts ([6, 8]) have been made to use
some board characteristics to improve learning efficiency
of the ANN. Lassabo et al [8] proposed using GP to predict
the next move. Although their approach is humanly under-
standable, a couple of issues must be addressed here. The
proposed GP output is not the number of wining moves, but
the next best move to be made. This makes the learning pro-
cess more complex. According to the results reported from
several real games, performance of the designed network is
far from optimallity by a factor of∼ 2. Because of the asso-
ciated large feature set this approach is also limited to a few
endgame situations only. Further, the move ponder time is
not efficiently utilized in the proposed method.

Some other works ([5, 10]) tried to mate the king oppo-
nent only; thus, the optimallity of the solution is not taken
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into consideration. These methods are more or less problem
specific and are not expandable to other endgame positions.
None of these techniques properly utilize the available time
to improve the solution quality.

Our objective is, however, different than those reviewed
above. We propose to design an ANN as an evaluation func-
tion. As stated before, the evaluation function plays a signif-
icant role in the performance of search algorithms for two-
player games. A large body of research has been devoted
to improve this function directly. The most powerful chess
engines such as “Deep Blue” [4] and “Crafty” [7] explore
the impact of the most recent progresses in evaluation func-
tion. Therefore, we propose to use the idea of learning to
improve the evaluation function. Detail explanation comes
next.

4 Methodology
One of the concerns with performance of the current en-

gines is to improve their accuracy and time complexity. To
address this issue, we propose to assign a fraction of the on-
line search process to an offline estimation. In order to im-
plement this idea, the offline process can be accomplished
by exploiting some learning techniques.

Our idea of learning is to use some characteristics of
board position as the input of the ANN which predicts the
optimal value in terms of the number of moves for every in-
stance. To obtain more accurate network inputs i.e., board
features, we consulted a chess grandmaster.

To simplify the description, this paper focuses on the
simple α−β algorithm as the basic method used in 2-player
game engines. This is for simplification only, though the
actual implementation of the proposed method is done ac-
cording to the latest improvement of α− β used by Crafty.

As a train set, the number of optimal moves to mate the
opponent king is calculated by the search algorithm. Af-
ter the training is efficiently completed, the trained ANN
is used as an evaluation function in the search process.
The limitation caused by space and time complexity of the
search algorithm on one side and the accuracy of the evalu-
ation function on the other side, are two main issues which
are simultaneously improved by our proposed offline train-
ing approach.

This section describes the idea of learning in two steps:
the proposed methodology and the ANN training strategies.

4.1 Construction of Training Data
To identify inputs of the ANN, we need to generate a

number of endgame board instances. During the endgame,
we start from the initial position and try to mate the black
king in an optimal number of moves. In other words, dur-
ing the play, returned value of the evaluation function de-
creases from initial value to zero (when it mates the oppo-
nent). Therefore, the evaluation function should predict the

optimal value for all cases: hard, medium and easy ones.
To achieve this, we should obtain our training data from all
part of problem landscape. To obtain comprehensive train
dataset from the entire problem domain we follow these
steps:

• Generating some board positions in which white mates
black (mate positions) and saves them in a database as
goal states.

• Running Depth First Search (DFS) algorithm for one
goal state selected randomly each time to any depth d.
To avoid being trapped in some states while covering
the entire domain, the following rules are taken into
consideration:

– Due to likely loops in the solution path, if we
have already reached depth d, the optimal path is
definitely shorter than d. Thus, from the begin-
ning we choose d large enough to cover compli-
cated states. To do this, one can start with small
valued ds and monotonically increase to reach a
maximum value which covers all cases.

– A linear memory should be allocated to save all
the previous states up to the current state. This
prevents cycling in the current path.

– At every state we choose the moving operator
with minimum probability of occurrence to that
point.

4.2 Endgame Feature Selection
In the particular case of chess endgame, the player usu-

ally follows specific algorithms or strategies. While involv-
ing few pieces, solving endgames is not a trivial task. In-
deed, pieces involved have more freedom, thus, there are
many possible moves per configuration. While chess en-
gines usually perform a wide search through endgame ta-
blesets to determine the correct solution, human players are
able to exclusively perform a deep search to determine a
wining strategy. This is a real advantage to solve endgames
where planning an appropriate strategy is necessary. At this
point we introduce some examples of endgame positions
and describe the associated features to be used.

4.2.1 King-Rook-King (KRK)

In King-Rook-King (KRK) endgame, to avoid stalemate
and to realize the check mate, it is inevitable to coordi-
nate king and rook moves. To do so, players apply solving
methods which are based on specific endgame patterns. In a
KRK, it is obvious that the objective should be beating the
defending king back to board edge (i.e., check mate). To
obtain this result, the attacking king must be in direct op-
position to the defending king and the rook must check the
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Figure 2. (a) Lateral check: there is opposi-
tion and the rook laterally checks the king.
(b) Checkmate: the king can not defend any-
more.

Table 1. Kings Characteristics - These fea-
tures are commonly used by all endgame con-
figurations.

Feature description Value
The kings in opposition [0-1]
The kings in diagonal opposition [0-1]
The Kings in the same row [0-3]
The kings in the small center of the board [0-2]
The kings in the large center of the board [0-2]
The black king in the edges of the board [0-1]
The minimum distance between the kings [0-6]

defending king on its side (Figure 2). This might need to be
repeated several times.

In analyzing the board configurations to choose the best
next move, simple patterns are used, though these simple
patters may emerge too complex when combined. Mean-
while, the objective of mating the black king in the mini-
mum number of moves is more difficult than, merely mating
the black king and this necessitates knowing some patterns
of predicting the best moves.

Table 1 summarizes all features describing both black
and white kings positions which are used by all endgame
configurations and Table 2 illustrates some characteristics
with which KRK board positions are described. Each de-
scribing function gives an integer value which is the input
for ANN. Chess Players usually do not consider all possi-
bilities to make their next move. Players specific objectives
is split up in board characteristics and can be achieved by
specific moves.

4.2.2 King-Queen-King (KQK)

The combination of king and queen is to some extent similar
to that of rook and king, but king and queen can mate the

Table 2. KRK Characteristics - Some of the
characteristics are taken from [8].

Feature description Value
The white rook blocks the black king [0-1]
The white rook checks the black king [0-1]
The white rook controls a line between
the kings [0-1]
The black king in a position capturing
the white rook [0-1]
The white king protects the white rook [0-1]

Table 3. KQK characteristics.
Feature description Value
The queen in the small center of the board [0-1]
The queen in the large center of the board [0-1]
The white queen in the adjacent row,
column or diagonal of the black king [0-3]
The black king in check [0-3]
The queen in the eight adjacent squares of
the black king and the white king supports it [0-2]

opponent faster. Because queen has more freedom of move
and can protect diagonals, too, thus the black king cannot
approach the queen in any direction.

The reason for choosing KQK endgame as another
benchmark is that despite the fact that queen can mate black
king faster, board patterns for KQK endgame are more com-
plicated than those of KRK. In other words, the KRK do-
main is a subset of KQK situation when queen can move
in all directions. According to our discussions with a chess
grandmaster the characteristics describing this endgame po-
sition are defined and shown in Table 3.

4.2.3 King-Bishop-Bishop-King (KBBK)

Another benchmark with one more piece than the previous
ones is two-bishop (KBBK) endgame. By pushing the op-
ponent king into a corner we choose the easiest path to mate.
In order to do this, bishops should cover side by side diago-
nals in a way that the black king cannot cross over and then
the white king can push the black king into a corner. The
opponent will be placed in a corner where it is squeezed in
by bishops, tightly. When the black king reaches a corner,
bishops have less attacking squares as shown in Figure 3(a).

Although it is believed that the only way it to mate with
two bishops is by driving the opponent king into a corner,
it is not always the case with mating. This can be done in a
more sophisticated way: directing the king against an edge
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(a) (b)

Figure 3. Two instance of chess board posi-
tion for KBBK endgame. a)Bishops directing
the black king to a corner, b)Bishops direct-
ing the king against an edge.

Table 4. KBBK characteristics - The light-
squared bishop is called F1 and the black-
squared one is called F2.

Feature description Value
F1 and F2 check the black king [0-2]
F1 or F2 in the eight adjacent square
and the white king supports it [0-2]
The bishops in the adjacent diagonals [0-1]
F1 or F2 in the adjacent diagonals of the
black king [0-2]
The minimum distance between the black
king and bishops located in same row or
the same column [0-6]

and delivering a mate (Figure 3(b)). This situation happens
only if the opponent does not play optimally. Table 4 illus-
trates the board features for KBBK endgame2.

5 Experimental Results
In this section we present the empirical results of using

ANN as an evaluation function for endgame positions in-
troduced in Sec. 4.2. The proposed method is examined in
two aspects: ANN performance on any individual test data
as well as ANN verification on real endgames. The perfor-
mance of ANN is evaluated by Mean Square Error (MSE):

MSE =
ΣN

i=0(di − yi)2

N
(1)

where N shows the data size, yi is the ANN output for the
ith test data, and di is the desired output. The results are
presented in Sec. 5.1.

2All the characteristic tables introduce above give only a portion of
many features one could use to describe the board position.

Figure 4. Training process of chess endgame
back propagation algorithm.

Table 5. Mean-Squared error and standard de-
viation on train data.

End-Game MSE Standard Deviation
KQK 0.008347 0.021456
KRK 0.059514 0.021639

KBBK 0.116693 0.031931

Although, the MSE metric checks how well the ANN
output fits to its desired value, experiments with heuristic
searches indicate that a small MSE error does not necessar-
ily result in a good game playing. To overcome this issue,
the trained ANN was tested on 20 random real endgame sit-
uations with results presented in Sec. 5.2.

As discussed before, one advantage of the learning chess
is that the trained ANN can be used either as the next best
move predictor or as an evaluation function in the search
tree. It will be explained that the quality of solution will
improve if an ANN-based search tree is taken into consider-
ation. In this section, the results for each endgame instance
with different play time will be discussed, too.

5.1 Training
For each endgame introduced before, 10000 train data

were generated using the algorithm presented in Sec. 4.1.
The neural network used for KRK case is an all connected
feed forward neural network with one hidden layer. The
number of neurons in the hidden layer is five. There are 5-
15 nodes in the input layer which define the characteristics
for every position according to the tables given in Sec. 4.2.

For the purpose of this paper, only 10000 input-output
train vector pairs were selected for each endgame. Figure 4
shows the training process with the error function defined
in (1). All curves have been obtained by averaging over
five times curve fitting. The plot displays result for each
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Table 6. Comparison results of ANN-based
engine with the existing techniques for dif-
ferent endgame instances. Clearly, Nalimov
takes a large space to store all configurations.

Endgame Engine Type Time Moves Size
KQK Crafty vs Nalimov ≤ 4 sec 9.8 NA
- Nalimov vs Nalimov NA 6.9 26×104

- Learning vs Nalimov ≤ 0.15 7.6 ≤200
- Learning vs Nalimov ≤ 0.30 7.4 ≤200
- Learning vs Nalimov ≤ 1 7.3 ≤200
KRK Crafty vs Nalimov ≤ 4 28.7 NA
- Nalimov vs Nalimov NA 13.5 26×104

- Learning vs Nalimov ≤ 0.15 14.3 ≤200
- Learning vs Nalimov ≤ 0.30 13.9 ≤200
- Learning vs Nalimov ≤ 1 13.7 ≤200
KBBK Crafty vs Nalimov ≤ 4 22.1 NA
- Nalimov vs Nalimov NA 14.4 16×106

- Learning vs Nalimov ≤ 0.15 16.2 ≤200
- Learning vs Nalimov ≤ 0.30 15.8 ≤200
- Learning vs Nalimov ≤ 1 15.6 ≤200

endgame, separately. It is observed that for each case after
about 400 iterations the training error reaches to the values
presented by Table 5. The results indicate that the training
stage converges very quickly to reasonable error values.

5.2 Verification
After the training stage, the proposed ANN was verified

for real endgame situations. The trained ANN is used by
the α− β as an evaluation function to evaluate chess board
position. Therefore, the quality of solution depends on the
tree depth in which the α−β goes thorough. It also depends
on the total tree search time.

Each endgame was performed between an engine based
on the α − β using the ANN as its evaluation function and
another engine using the Nalimov tableset. As stated be-
fore, Nalimov tableset includes the best endgame moves for
both sides, i.e., the black side does its best play to survive.
The number of moves to mate the black king in `̀ ANN v.s.
Nalimov´́ game is compared with that of the `̀ Nalimov v.s.
Nalimov ´́ game (which indeed is the optimal value to solve
an endgame instance). We also compared our results with
those played by the referring chess engine, Crafty v.s. Nal-
imov.

The experimental results given in Table 6 were averaged
over 20 random endgame positions. The time (second) as-
signed to each player to play the entire endgame, the aver-
aged move number for white player to mate the black king,
and the space requirement (byte) for each method are shown
in the last three columns. The results indicates that the
learning-based approach for KQK, KRK and KBBK out-
performs Crafty 23%, 50% and 27%, respectively. Notice
that the learning could also reduced the time by 96% effi-
ciency. Evidently, the quality of solution improves when the
engine has more time to decide. In other words, the signif-

icant saving in prediction time lets the engine make more
appropriate decision at its turn by digging into the search
tree.

6 Conclusions
In this paper we developed a new evaluation function us-

ing neural networks to solve chess endgame positions sub-
optimally. The computed strategies were tested on three
different endgames showing promising results. The results
indicate that the proposed method can solve those endgames
with significant improvements over the state-of-the-art tech-
niques in terms of time, space, and move complexity.

Our future research direction is a two-folded plan. First,
we make use of advances in the learning techniques to
progress the efficiency of the evaluation function. We plan
to improve the optimality of our MSE-based evaluation
function in assigning the highest rank to the optimal moves.
A combination of the MSE-based learning and other tech-
niques such a the area under ROC curve will be studied.
Second, the proposed method will be extended to other
endgame positions which are harder for human to solve,
e.g., King-Knight-Bishop-King.
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