
Sokoban Solver—a short documentation

Pavel Klavı́k

http://pavel.klavik.cz/projekty/solver.html

This is a short text describing technics used for
solving Sokoban levels. Sokoban is a PSPACE-
complete problem [1]. The main effort is to search
the space somehow efficiently and to solve at least
small levels. Most of the ideas are taken from the
Junghanns’s thesis [2]. We are also grateful the au-
thors of [3], especially the correspondence with the
author of the solver YASS was very useful.

A Sokoban level contains walls, boxes and goals.
The goal is to place all the boxes on the goals. The
storekeeper (called in Japanese Sokoban) can only
push boxes forward and only one box at the same
time.

Sokoban has many specific properties unlike other
similar problems as Rubik’s cube or Lloyd Fifteen
Puzzle. Moves are irreversible which means a bad
move can made the level unsolvable. Also, the num-
ber of different positions can be even for small level
of size 20 × 20 approximately 10100. Moreover, it
is non-trivial to find a good heuristic for distance of
the position from the solution. All these properties
makes Sokoban an interesting problem to solve.

1 How to use the solver

To compile the solver, use the makefile. To run the
solver, use:

./solver input_file [output_file]

where input_file contains levels in the standard
Sokoban format. For example, this is the first level
from the original game:

#####

#

#$ #

$##

$ $

######

..#

$ $..#

#@## ..#

#########

#######

The parameter output_file is optional, used for
writing solutions.

The input consists of the following characters:

• “#” is a wall,

• “ ” is a free space,

• “$” is a box,

• “.” is a goal place,

• “*” is a boxes placed on a goal,

• “@” is for Sokoban and

• “+” is for Sokoban on a goal.

Also, the file may contain more levels, separated by
at least one empty line.

The output solution contains a line for every level.
The solution is a string representing sequence of
moves. The lowercase letters “uldr” are used for
moves and the uppercase letters “ULDR” for pushes.
For example, this is a solution of the level above.

ullluuuLUllDlldddrRRRRRRRRRRRRlllllll

luuululldDDuulldddrRRRRRRRRRRdrrrUldl

lulllllluuulLulDDDuulldddrRRRllddrrrr

uurrrrrurDllllllddlllluurrRRRRRRRdRUl

lllllluuulluuurDDllddddrrruuuLLulDDDu

ulldddrRRRRRRRRRRdrRlluuRDlllllllllll

lulldRRRRRRRRRRRRRRRlllllllluuulluuul

DrddrrdddrrrrrrdRlulllllluuulluulDDDD

uulldddrRRRRRRRRRRR

A solution can be displayed using a simple tool
draw_solutions. It has the following usage:

./draw_solutions level_file solution_file

2 Overview of the algorithm

The solver basically works in the following way. It
searches the game tree of all the reachable positions.
For each position, we generate all its children created
by a push of one box. The number of the positions
grows very quickly. To fasten the solving, we use the
following technics:

1

Hashtables. To avoid searching a position several
times, we store an information about it to a hash
table. Before inserting a position to the game tree,
we check whether it was not found before. The hash
function is very simple. In the beginning, we assign a
random number to every field. To calculate the hash
key, we take the number of all the position with a
box (+ some other number for a field with Sokoban)
and xor all of these numbers. This gives a resulting
index in the hash table modulo a big prime number.

Distance heuristic. Since we do not have enough time
to explore the whole game tree, we would like to pre-
fer the positions that are closer to the goal. As a sim-
ple heuristic, we sum the distances of all the boxes for
their closest goals. Notice that this is a lower bound
for the distance, we cannot solve the level faster. On
the other hand, it is not likely that the mapping of
boxes to the closest goal field is a bijection.

Deadlock tables. A position (or a part of it) is called a
deadlock, if it makes the level unsolvable. The solver
tries to detect small deadlocks which consist of few
boxes. We note that to detect deadlocks efficiently is
similarly hard as solving the level.

First, a trivial deadlock consists of just one box.
For every field, we pre-calculated whether it is possi-
ble to push a box from it to any goal (even if the rest
of the boxes would be removed). If it is not possible,
we call such a field a dead field. We denote dead fields
“x”. They are walkable for Sokoban, but no box can
be pushed on them. Moreover, these field can be a
part of the input file.

The solver contains several non-trivial deadlocks
for two, three and four boxes. For example, two boxes
aside a wall, for which at least one box is not at a goal,
make a deadlock. Areas where these deadlocks can
appear are pre-calculated. Using that, deadlocks are
tested very fast during the solving.

Tunnel macros. A tunnel is a small part of the level
that look like this:

#

#####

@$ => @$

#####

#

It makes no sense to push box only by one field. We
either do not push the box at all, or we push it to the
end of the tunnel. All the tunnels are pre-calculated
and considered as a single field.

PI-corral pruning. This heuristic reduces the number
of the positions that are expanded. Most of the time,
there are locations, called corrals, that are inaccess-
able for Sokoban. A corral is called PI-corral if all

the boxes on its border can be pushed only inside and
all the moves are possible right now, not blocked by
another box. For example, the left corral is unlike
the other two a PI-corral :

######

$ # $ # $

$ # $ # $$

$$ # $ # $

####

#

The key observation is the following. If the position
inside a PI-corral is not solved yet, we have to push
a box on its border, sooner or later. So, we can do it
immediately, ignoring all the moves except pushing
of the boxes on the border of this corral. This signif-
icantly reduces the number of moves generated from
the position. It is not true that PI-corral pruning ex-
pands the positions that lead closer to the solution.
It expands positions for which it is not clear whether
they are dead. The size of the position is reduced
and a small static deadlock may be detected. So, PI-
corrals helps to prune the search tree and to kill dead
positions.

3 Basic structure of the code

The code has the following structure. The file
solving_routine.h contains the main routine. A
tree contains nodes of type move. Every move con-
tains a pointer to its parent and a structure called
position which contains a 0-1 vector describing the
positions of the boxes.

In the beginning, a level is loaded, using func-
tions in level.c. It is slightly modified and several
things are pre-calculated, using level_info.c. Also,
deadlock tables in deadlock_table.c are initialized.
Then the solving routing is initialized. Every posi-
tion in the queue is analyzed. Functions in crs.c

searches through the position and find all the pos-
sible moves from this position. For each move, we
create a descendant and store it in the tree and to
the queue. The memory is allocated by big chunks in
allocator.c.

4 Non-implemented ideas

The last section contain several ideas which were not
implemented yet. We plan to try them in future.

Goal pushing. This approach is key to be able solve
more levels that look like the level shown above. This
level has the following pattern. It contains a store-
room where all the goals are placed. There are other

2

rooms that contain the boxes. We can split solving of
this level to a pair of independent problems: To find
a way to push every box to the entrance of the store-
room and to push all the boxes from the entrance
inside the storeroom. This could help to solve more
difficult levels.

Dynamic deadlocks. This is another benefit of PI-
corrals. If we detect that some bigger configuration
of boxes is a deadlock, we can add this deadlock to
the database and check it for future positions. For
some levels, this can significantly improve the solv-
ing speed. On the other hand, if we add to many
positions to the tables, it could lose the efficiency.

Better tunnels. We could generalize the tunnel detec-
tion even for other shapes of tunnels, for example a
tunnel can be bended. This could lead to rather mak-
ing macro moves than pushing boxes by one field.

Better heuristics. If we calculate the heuristic as the
sum of the closest goal distances, we mostly obtain
a mapping of boxes to the goal places which is not a
bijection. We could construct a bipartite graph hav-
ing the boxes as one part and the goals as the other
part. An edge is connecting a box and a goal, if it is
possible to push the box from the current position to
this goal (even if the rest of the level is empty). We
can even weight the edges by distances. Now, the
more accurate heuristic is the weight of a smallest
perfect matching. Moreover, if no perfect matching
exists, the position is a deadlock. It is little slower to
calculate this heuristic but the solver could explore
more relevant positions.

Level symmetries. This is our original idea. Several
levels of many authors are very symmetric—it is nat-
ural since symmetries are considered to be very beau-
tiful. We could identify the positions that are sym-
metric. We believe that it would be possible to check
all the symmetries very fast, using some bitwise op-
erations. Moreover, we could extend this idea even
for subpositions, for example rooms.

Normalized positions. In the current version, the po-
sitions can be distinguished even by the position of
Sokoban. In many cases, it does not matter where
Sokoban exactly stands. The positions having all
the boxes placed the same and Sokoban stands in
the same area of the level should be considered the
same. We could calculate a normalized position of
the Sokoban, for example in the top left corner of
the area. This approach has a con, since to make a
correct numbering we need to expand the positions
before inserting them to the tree (and the queue). In
the current version, we can do this by calculations
with vectors.

Parallelization and backward pushes. It would be

nice to split the work between several processes, each
calculating some small subset of positions. As almost
every parallelization, the main problem with this idea
is that we need to share common data, in this case
the hash tables. If we do not share them, we would
calculate the same positions more times. If we share
them too often, we lose too much time.

The following idea could be used to split the prob-
lem between two processes: The first process searches
in the normal manner, the other one searches from
the level in the solved positions (there may be more
positions of Sokoban), using backward pushes. If
these calculation meet and actually need to share
data, the level is already solved.

Also, we could split the work in a non-symmetric
way. One process would be solving the level and the
other ones would try to prove that the current posi-
tion is a deadlock.

Better implementation. Several parts of the solver
can be implemented in a much faster way. For ex-
ample, we could try to make the solver more cache
friendly. Also, we could use the SSE instructions to
compute with positions and deadlock faster. This
could be very important if the deadlock tables would
be significantly larger.

References

[1] Joseph C. Culberson, Sokoban is PSPACE-
complete, 1997.

[2] Andreas Junghanns, Pushing the Limits: New
Developments in Single-Agent Search, Ph.D. The-
sis, University of Alberta, Department of Com-
puting Science, 1999.

[3] Sokoban Wiki, http://www.sokobano.de/wiki/.

3

