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ABSTRACT. I t  is proved that a natural general izat ion of chess to an n x n  board is 

complete in exponential time. This implies that there ex is t  chess-positions on an 

n x n  chess-board for  which the problem of determining who can win from that posi t ion 

requires an amount of  time which is  at least exponential in n . 

I .  INTRODUCTION 

From among a11 the games people play, chess towers as the most absorbing and 

widely played. Indeed, i f  a t tent ion is res t r ic ted to 2-person games of perfect in fo r -  

mation wi thout  chance moves played outside the Orient,  the ever rejuvenating in te res t  

in the 1500 year old game has a qua l i t y  of  depth and breadth well  beyond that  of any 

potent ia l  r i va l °  I t  is noteworthy, then: that  in the long s t r ing  of  complexity 

resul ts  for  games~ chess had yet to appear. Recently J. Storer announced that chess 

on an n x n  board is Pspace-hard [ I 0 ] .  See also J.M. Robson [7].  We w i l l  show that 

a natural general izat ion of chess to n x n  boards is complete in exponential time, 

the f i r s t  such resu l t  for  a " rea l "  game. This implies that  fo r  any k ~ l , there 

are i n f i n i t e l y  many posi t ions ~ such that  any algorithm for  deciding whether White 

(Black) can win from that  posi t ion requires at least cI~l k time-steps to compute, 

where c > 1 is a constant, and l~I is the size of ~ Generalized chess is 

thus provably in t rac tab le ,  which is a stronger resu l t  than the complexity resul ts  for  

board games such as Checkers: Go, Gobang and Hex which were shown to be Pspace-hard 

[1 ,3 ,5 ,6 ] .  

We l e t  generalized chess be any game of a class of chess-type-games with one 

king per side played on an n x n  chessboard. The pieces of every game in the class 

are subject to the same movement rules as in 8 x 8  chess, and the number of White 

and Black pawns~ rooks, bishops and queens each increases as some f ract ional  power 
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of n .  Beyond th is  growth condi t ion,  the i n i t i a l  posi t ion is immaterial, since we 

analyze the problem of winning fo r  an a rb i t ra ry  board pos i t ion.  

Unfortunately,  our constructions seem to v io la te  the s p i r i t  of 8 x 8  chess, in 

much the same way as the complexity proofs for  Checkers, Go, Gobang and Hex mentioned 

above. Typical posit ions in our reduction do not look l i ke  larger versions of t yp i -  

cal 8 x 8  chess endgames. Although we have not t r ied  to answer questions of reacha- 

b i l i t y ,  i t  seems offhand as though players would have a hard time t ry ing  to reach our 

board posit ions from any reasonable s ta r t ing  posi t ion.  (Reachabi l i ty may not seem 

quite as unfeasible,  perhaps, i f  we recal l  the chess ru le s tat ing that a pawn reaching 

the opposite side of the board can become any piece of the same color other than pawn 

or king [4 ] . )  What we can say, however, is that  certain approaches for deciding 

whether a posi t ion in 8 x 8  chess is a winning posi t ion for  White may not be very 

promising, namely those approaches which work for  a rb i t ra ry  posi t ions and generalize 

to n x n  boards. Such approaches use time exponential in n ,  and hence can be use- 

fu l  only i f  the exponential e f fec t  had not yet been f e l t  for  n=8 . 

Thus, whi le we may have said very l i t t l e  i f  anything about 8 x 8  chess, we 

have, in fac t ,  said as much about the complexity of deciding winning posi t ions in 

chess as the tools of reduction and completeness in computational complexity al low 

us to say. 

Our resu l t  is in l i ne  with the suggestion to demonstrate the complexity of 

in te res t ing  board games by imbedding them in fami l ies of games [8] .  An in teres t ing  

coro l la ry  of our resu l t  is that  i f  Pspace ~ Exptime, as the conjecture goes, then 

there is no polynomial bound on the number of moves necessary to execute a perfect 

strategy. This is  so because Pspace ~ Exptime, and the "game-tree" of chess can be 

traversed in endorder to determine the w in - lose- t ie  membership of each node (game 

pos i t ion) .  Though th is  takes an exponential amount of time, the memory requirement 

at each step is only the depth p(n) of the tree - w h i c h  is kept on a stack - and 

the descr ipt ion of a terminal posi t ion.  Thus, i f  p(n) is polynomial, then the game 

is in Pspace. Since chess is complete in Exptime, i t  belongs to the hardest problems 

there, hence i t  l i es  in Exp t ime-  Pspace i f  Pspace ~ Exptime. 

For the sake of the un in i t i a ted ,  we now give a short informal in t roduct ion to 

the basic notions of computational complexity. Let S be a subclass of decision 

problems ( i . e .  problems whose answer is "Yes" or "No"). For decision problems ~l ' 

z 2 , we say that  ~l is polynomiai ly transformable (or reducible) to ~2 (notat ion:  

~l ~ ~2 ) ' i f  there exists a funct ion f from the set of  instances of ~l to the 

set of instances of ~2 such that :  

( i )  I is an instance of ~l for  which the answer is "Yes" i f  and only i f  

f (1)  is an instance of ~2 for  which the answer is  "Yes". 

( i i )  f (1)  is computable by a polynomial time algorithm in the size of I (a 

"polynomial time a lgor i thm") .  

A decision problem ~ is S-complete i f :  
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( i )  ~ E S , 

( i i )  for  every ~ E S , ~ ~ ~ . 

A decision problem ~ is S-hard i f  ( i i )  holds but ( i )  does not necessari ly 

hold. A decision problem is in t rac tab le  i f  i t  cannot be decided by a polynomial time 

algorithm. 

A nondeterminist ic algorithm is an "algorithm" which can "guess" an ex i s ten t i a l  

so lu t ion,  such as a path in a tree and then ve r i f y  i t s  v a l i d i t y  by means of  a deter- 

m in i s t i ca l go r i t hm .  

Important classes of  decision problems are the class P of a l l  decision problems 

with (determin is t ic)  algorithms whose running time is bounded above by a polynomial 

in the size I ~ I  of  ~ ; the class NP (nondeterminist ic polynomial) of a l l  deci- 

sion problems ~ with nondeterminist ic algorithms whose running time is bounded above 

by a polynomial in I~I ; the class Pspace of a l l  decision problems ~ whose 

algorithms require an amount of  memory space bounded above by a polynomial in l~I ; 

and the class Exptime of  a l l  decision problems ~ with (determin is t ic)  algorithms 

whose running time is bounded above by an exponential funct ion in ]~I The 

fo l lowing basic re lat ions hold: 

P ~ NP ~ Pspace ~ Exptime 

I t  is  not known whether any of  these inclusions is proper, except that  P ~ Exptime. 

Furthermore, NP and Pspace are not known to contain any in t rac tab le  decision prob- 

lems, but Exptime is .  

From the de f i n i t i on  of ~ i t  fol lows that i f  ~I ~ ~2 ' then 72 E P implies 

~I E P . Therefore the S-complete problems for  any S are the "hardest" problems 

of S. In par t i cu la r  for  S =Exptime, the S-complete problems are a l l  in t rac tab le .  

For fu r ther  de ta i l s  and a formal treatment of  th is  topic the reader is referred to 

Garey and Johnson [2 ] .  

2. THE REDUCTION 

Let Q be the fo l lowing question: Given an a rb i t ra ry  posi t ion of a generalized 

chess-game on an n×n chessboard from our class of chess games, can White (Black) 

win from that  posi t ion? Following [2] ,  we define Exptime to be the set of  decision 

problems wi th t ime-complexity bounded above by 2 p(n) for  some polynomial p of the 

input size n .  Since in chess there are s ix  d i s t i n c t  pieces of  each color ,  the num- 

ber of possible conf igurat ions in n x n  chess is bounded by 13 n2 , hence 

Q E Exptime. We shal l  show that  G 3 ~ Q , where G 3 is the fo l lowing Boolean game 

proved complete in exponential time by Stockmeyer and Chandra [9] .  Throughout W 

(B) stands for  White (Black). As usual, a l i t e r a l  is  a Boolean var iable or i t s  com- 

plement. 
Every posi t ion in G 3 is  a 4-tuple (%, W-LOSE(X,Y), B-LOSE(X,Y), ~) , where 

E {W,B} denotes the player whose turn i t  is to play from the pos i t ion,  

W-LOSE = CII v C12 v . . .  v Clp and B-LOSE = C21 v C22 v . . .  v C2q are Boolean 
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formulas in 12DNF, that  is  each Cl i  and each C2j is a conjunction of  at most 12 

l i t e r a l s  (I  ~ i ~ p , 1 ~ j ~ q) ; and ~ is an assignment of  values to the set 

of  var iables X U Y . The players play a l te rna te ly .  Player W (B) moves by changing 

the value of  precisely one var iable in X (Y) . In pa r t i cu la r ,  passing is not per- 

mitted. W (B) loses i f  the formula W-LOSE (B-LOSE) is true a f ter  some move of  player 

W (B) . Thus W can move from (W, W-LOSE, B-LOSE, m) to (B, W-LOSE, B-LOSE, m') 

i f f  B-LOSE is  false under the assignment m (otherwise the game already terminated 

prev ious ly) ,  and m and m' d i f f e r  in the assignment of exact ly one var iable in X. 

I f  W-LOS#[ is  true under the assignment m' , then W jus t  los t .  A player who v io-  

lates any of  the game's rules loses immediately. 

In order to show G 3 = Q , we have to simulate G 3 on an n×n  chess-board. 

Spec i f i ca l l y ,  the goal is  to construct a posi t ion on the board where only one rook 

and two queens per var iable can move. A l l  other pieces are deadlocked. Each rook is 

permitted to be in only one of two posi t ions,  which have the meaning of assigning the 

values of 1 {T) or 0 (F) to the corresponding var iable.  The posi t ion ing of the 

deadlocked pieces force the queens to move through predefined "channels" in order to 

reach the opponent's king, and the posi t ion ing of the rook determines one of  two 

possible avenues through which a queen may pass. The overal l  construct ion is such 

that  those and only those truth-assignments to the variables which win the game G 3 

for  W (B) lead the queens of  W (B) to win the generalized chess game from the 

constructed posi t ion.  

Our basic st ructure is  the Boolean con t ro l l e r .  Figure 1 (2) i l l u s t r a t e s  a 

W (B) Boolean con t ro l l e r  for  a var iable x E X (y E Y) . White c i rc les  are WP's 

(W pawns), black c i rc les  BP's (B pawns), white squares WB's (W bishops), black 

squares BB's (B bishops), and WR, BR, WQ, BQ stand for  W rook, B rook, W queen, 

B queen, respect ively.  IT  WR is at i t s  south posi t ion in the WR-channel, as in 

Figure I ,  also cal led x -pos i t ion ,  then the value of x is 1 . I f  WR is at the 

north posi t ion of  the WR-channel, denoted by W~ in Figure I ,  also ca l led ~-pos i t ion,  

then the value of x is  0 . A s im i la r  convention is adopted fo r  Figure 2 which is 

indicated only schematical ly because a B Boolean Cont ro l le r  (BBC) is obtained from a 

W Boolean Contro l ler  (WBC) by an interchange Cl i  ~ C2j , x < > y , x < - - ~ y  and 

W ~ B throughout, followed by a 180 ° ro ta t ion .  (Here and below, Cli  (C2j) denotes 

a typ ica l  clause of W-LOSE (B-LOSE).) 

There is one W (B) Boolean Contro l ler  for  each x c X (y £ Y) . In normal play, 

W (B) moves his WR (BR) between the x-pos i t ion and the x-pos i t ion (y- and j - pos i t i on )  

in any W (B) Boolean Cont ro l le r  un t i l  the game G 3 w i l l  have been decided. I f  

W (B) does not abide by these ru les,  then his opponent can win via the B (W) Normal 

Clock (NC) or the B (W) Rapid Clock (RC) mechanisms detai led below. 

A global view of  the construct ion is shown in Figure 3. Let k be the largest  

number o f  l i t e r a l s  in any "And-Clause" in W-LOSE and B-LOSE. Let Cl i  in W-LOSE be 

an And-Clause consist ing of L l i t e r a l s  for  some 1 ~ ~ ~ k ~ 12 . Suppose that 

C l i = l  a f te r  a move of W. Now C l i = l  i f  and only i f  there are ~ B queens which 
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can reach Cli-channel intersect ions not under attack in t = 8  moves each: two 

moves in the WBC (Figure l )  or BBC (Figure 2), one move for  reaching the W Switch 

(Figure 4), four moves in the W Switch and one las t  move for reaching the C l i -  

channel. These ~ B queens now proceed down th is  channel, where ~-l of them are 

captured at the W A l t a r  (Figure 5), and the lone surv ivor  passes through a W delay- 

l i ne  from where i t  emerges into the B Coup De Grace (CDG)-channel to checkmate the 

W king (WK) (Figure 6). 

The W (B) Switch (Figure 4) is designed to l e t  a single B (W) queen pass from a 

W (B) Boolean Contro l ler  to the Cli  (C2j)-channels. When a BQ comes down a WBC or a 

BBC to an as yet untraversed W Switch, i t  captures the WP on the longer diagonal path 

and then proceeds down unperturbed to the Cl i-channels. I f ,  however, a BQ attempts 

to pass the W Switch in the opposite d i rec t ion ,  whether previously traversed or un- 

traversed, then, on reaching the northeast corner of the longer diagonal path, the 

WP jus t  underneath the captured WP goes north by one square and thus opens up a l i ne  

of more than k WB's e f f ec t i ve l y  covering the shorter diagonal path of the switch, 

making i t  impassable. 

The crossing of Clause-channels wi th a Clock-channel and two Li teral-channels 

can be observed from the western part of Figure 5. I f  y £ Cll , y ~ Cl2 say, then 

a BQ coming down the y-channel can stop unperturbed at the in tersect ion - cal led 

i s l a n d - w i t h  the Cl l -channel.  But i f  i t  t r i es  to come to rest at the in tersect ion 

with the Cl2-channel, cal led through- in tersect ion,  then i t  is promptly captured by a 

WP. The s i tua t ion  is reversed for  a BQ coming down the y-channel (y ~ Cll , y E Cl2). 

On the other hand, a BQ coming down a Clock-channel cannot stop unattacked at any 

crossing with a Cl i -channel ;  a l l  i t s  intersect ions with Clause-channels are through- 

in tersect ions.  

We remark that i f  a l i t e r a l  is not used in W-LOSE (B-LOSE), i t s  channel is 

truncated pr io r  to reaching the W (B) Switch (Figure 3). 

Every channel-segment has length at least U ~ 2(k( t+l )+2) , and the shields 

around each channel, inc luding truncated ones, also have thickness at least U. The 

reason for  th is  w i l l  become clear la te r .  (In the f igures,  some segments seem short 

and some shields th in ,  which is the resu l t  of emphasizing the main features at the 

expea~se of the standard ones. But i t  should be kept in mind that the true length of 

segments and thickness of  shields is at least U throughout.) 

3. THE WINNING SCENARIO 

As was mentioned above, i f  Cl i  contains ~ l i t e r a l s  and Cli = l  fo l lowing a 

move of W, then there are ~ BQ's each of which can reach the Cli-channel in 

t = 8  moves. The strategy of B is to f i r s t  move a l l  ~ BQ's into the Cli-channel 

and then to move each of them as far  down the Cli-channel towards the B CDG-channel 

as W permits. The f i r s t  BQ to pass has to capture the WP located at the W A l ta r  

which is backed up by a l i ne  containing precisely ~-l WB's (Figure 5). Thus W 

w i l l  capture j of the BQ's for  some 0 ~ j < L . Then the ( j + l ) - t h  BQ captures a 
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W piece at the W A l ta r  a f ter  ~t÷j÷i moves: each of the ~ BQ's requires t 

moves to reach the Cli-channel and j+l  of them make one capture move each. After 

the ( j + l ) - t h  BQ captures a W piece at the A l ta r ,  i t  spends (k-~)t  moves in a W 

de lay- l ine  consisting of (k-~)t  WP's. Two addi t ional  moves are spent for  reaching 

and r id ing the B CDG-channel. Using this strategy, B thus requires 

~t+j+l+(k-~)t+2 = kt+j÷3 moves for checkmating the WK. 

Following the departure of the f i r s t  BQ from i ts  vantage point on some Boolean 

Contro l ler  towards a Cli-channel, the WQ on the same Boolean Contro l ler  can enter 

the W Clock-channel. Each Clock-channel contains a delay- l ine of kt-3 moves 

(Figure 6). Since W also captures j BQ's in the Cli-channel and there are six 

addi t ional  moves for entering and leaving the W Clock-channel and r id ing the W 

CDG-channel, W can checkmate the BK (B king) a f te r  kt+j+3 moves. Thus B wins with 

a margin of one move. Since j < ~ s k , B can in fact checkmate the WK in at most 

k(t+l)+2 (= U/2) moves. Every other move of W , from among the l imi ted moves ava i l -  

able to him, is also doomed to f a i l u re .  This is shown in the next section. 

I f ,  a f te r  W's move which made Cli = l  , W switches his WR between the x 

-posi t ion and the ~ -posi t ion on some WBC, thus possibly unsatisfying W-LOSE, B can 

s t i l l  select the values sat is fy ing W-LOSE by using the B Detour Route (Figure l ) .  

This requires an addi t ional  move of B, but since also W lost  one move in his extra 

WR switching maneuver, the move balance between B and W is preserved, and B can s t i l l  

win. 

Now suppose that B starts to move BQ's towards some Cli-Channels before the game 

G 3 has been decided. We show that W w i l l  win i f  he act ivates a W Clock immediately 

fo l lowing the departure of  the f i r s t  BQ, and then captures BQ's in the Cli-channels 

whene~er possible, otherwise proceeding down the W Clock-channel. 

Given th is strategy of W, B's only chance to win is to transfer in some Cl i -  

channel at least  ~ BQ's i f  clause Cli comprises ~ l i t e r a l s ,  since this is the 
f 

only way a BQ can enter the B CDG-channel. The r - th  BQ requires t r moves to reach 

the Cli-channel, where t ' =  r t or t+l . There are two cases: 

( i )  t~ = t  for  a l l  r (I ~ r ~ L) . Since W-LOSE is s t i l l  false~ at least  one 

BQ must stop at a through-intersect ion. Then a WP captures i t ,  f o i l i n g  B's design. 

Now W wins via i ts  clock-mechanism a f te r  a possible engagement at the W Al tar .  

( i i )  t~ = t+ l  for  some r (which means that B uses the B Detour Route in some 

WBC). I f  B again stops at a through-intersect ion, the s i tuat ion is as before. I f  

B stops at islands only, then B spends ~ moves in the BQ-WB batt les at the W Al tar ,  

(k-~)t  moves in the channel de lay- l ine and two moves for  reaching and r id ing the B 

CDG-channel° Thus B requires at least  ~ t r+  (k-L)t+~+2 ~ Lt+l+(k-&)t+L+2=kt+~+3 
r=l 

moves to checkmate the WK. Now W spends L-l moves in capturing BQ's and kt+3 

moves in the W Clock and W CDG-channels. Thus W can checkmate the BK in kt+~+2 

moves, less moves than B, and so W wins. 
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4. "ILLEGAL" MOVES 

The above analysis - except the las t  p a r t - w a s  based on the assumption that 

the players do in fact  simulate G 3. We ca l l  a move " i l l e g a l "  i f  i t  is a legal move 

in generalized chess, but is e i ther  not part of  the simulation of G 3 al together,  or 

is  part but is  taken at the wrong time for  a proper simulat ion of  G 3. Below we con- 

sider the nonobvious " i l l e g a l "  moves. 

I .  The WBC. There are only s ix  pieces that can move: WR, WQ, BQ, two BP's and 

one WP (Figure I ) .  

A. Moves of WR. 

( i )  Suppose that  whi le the game G 3 is s t i l l  undecided, WR leaves the 

WR-channel from i t s  normal x or ~-pos i t ion,  going east or west. (This has the 

bizarre e f fec t  o f  making both x = 1 and x= 1 as far  as B-LOSE is concerned, but 

leaving x unchanged in W-LOSE.) 

I f  WR stops in the l i ne  of s ight  of  BQ, then BQ captures WR. The t iming is 

such, as is easy to ve r i f y ,  that  even i f  WR's move made B-LOSE t rue,  B can now win 

via the B RC-channel except that i f  WQ moved to the x-pos i t ion a f ter  BQ captured WR, 

then BQ has to back up to the B NC/RC-channel in tersect ion and win via the B NC- 

channel. I f  WR stops elsewhere, then BQ goes d i r e c t l y  to the WR/B RC-channel i n te r -  

section and wins via the B RC-channel. 

( i i )  Suppose that  whi le G 3 is s t i l l  undecided, WR stops w i th in  the WR- 

channel at some locat ion other than the x or ~-posi t ion.  (This has the e f fec t  of  

making x = I  and x =I  in both B-LOSE and W-LOSE.) I f  th is  locat ion is the i n te r -  

section with the B RC-channel, then BQ captures WR and wins again via the B RC- 

channel, Otherwise a BP captures WR. I f  now W moves his queen to the x -pos i t ion ,  

then BQ goes to the B NC/RC-channel in tersect ion and then wins via the B NC-channel 

(even i f  B-LOSE is now t rue) .  Otherwise BQ can again win via the B RC-channel. 

B, Moves of W~- 

( i )  suppose that  whi le G 3 is s t i l l  undecided, WQ moves northwest to 

the in tersect ion wi th the W Clock-channel. Then BQ w i l l  capture WQ, since otherwise 

W can win via i t s  Clock mechanism. Even i f  W now makes B-LOSE true,  B can win by 

moving southeast to the in tersect ion with the B NC-channel and then proceeding down 

th is  channel. 
( i i )  Suppose that  WQ moves as in ( i )  in some WBC R, but the move is 

made a f ter  W-LOSE has been made true previously by W. I f  BQ in R is required for  

winning, B moves i t  out towards the Cl i-channels. Otherwise B continues with his 

normal winning strategy, ignoring W's move al together.  

( i i i )  Suppose that  whi le G 3 is s t i l l  undecided, WQ moves down v e r t i c a l l y .  

I f  i t  comes to rest  at the B NC/RC-channel in tersec t ion ,  B w i l l  capture i t  wi th his 

BQ which w i l l  subsequently proceed down the B NC-channel and win. Otherwise WQ is 

captured by a BP. Even i f  W now makes B-LOSE true,  B can win with his BQ via the 



285 

B NC-channel. 

( i v )  Suppose that  WQ moves as in ( i i i ) ,  but the move is made a f ter  

W-LOSE has previously been made true by W. Then B's strategy is essent ia l l y  the 

same as in ( i i ) ,  so we omit i t .  

(v) Once BQ has l e f t  a WBC, WQ can nei ther pass through the L i t e ra l -  

channels in W-LOSE nor through the B Clock-channel, because of the BP's defending 

the channel corners. An attempt by WQ to advance in para l le l  to some of these 

channel segments from the outside by gnawing i t s  way along the shie ld ing WP's and 

then s l ipp ing in at a su i table corner, is simply ignored by B, since the length of 

each channel-segment is at least U, which is about twice as long as i t  takes B to 

win. Also WQ cannot skip from channel to channel by penetrating through channel- 

shie lds,  since these have thickness at least  U. 

(v i )  Suppose that  a f te r  W-LOSE has previously been made true by W, and 

WR is in the x -pos i t ion ,  WQ moves to the x-pos i t ion in some WBC R. I f  BQ in R is 

required for  winning, B w i l l  now move i t  towards the Cli-channels via the B Detour 

Route. Otherwise B continues with his normal winning strategy. 

I f  under the same assumption WR is in the x-pos i t ion and WQ advances towards 

the x-pos i t ion  by capturing the BP jus t  southwest of the x -pos i t ion ,  then provided 

BQ of R is required for winning, BQ moves out towards the Cli-channels via the x- 

channel. I f  BQ is not required for  winning, W's move is ignored as before. 

C. Moves of BQ. The moves (Bi)-(Bv) have obvious counterparts for  BQ in a 

WBC and move (Bvi) has a counterpart in a BBC, so we omit the deta i ls .  Only in the 

counterpart of (B i i )  a s l i g h t l y  new s i tua t ion  may ar ise:  Suppose that  BQ moved to 

the B NC/RC-channel in tersect ion and WQ then advanced towards the x-pos i t ion - since 

WQ is required for  w i n n i n g -  f i r s t  capturing the BP jus t  southwest of the x-pos i t ion .  

I f  BQ now moves to the or ig ina l  posi t ion of WQ, then WQ captures BQ and then continues 

down the x-channel towards the C2j-channels. Otherwise WQ continues d i r ec t l y  down 

the x-channel. A s imi la r  s i tua t ion  can arise in the counterpart of (Biv) ,  which W 

handles also in the way jus t  described. 

I f ,  before G 3 has been decided, BQ advances to i t s  f i r s t  s tat ion towards an 

x (x)-channel whi le  WR is in the ~ (x ) -pos i t i on ,  then BQ is captured by WR. On i t s  

next move, WQ w i l l  enter the W Clock-channel in the WBC in which the BQ was captured, 

and win via i t s  Clock-mechanism. I f  BQ makes a move of  th is  type a f te r  B made B-LOSE 

true,  i t  is ignored by W, who continues with his normal winning strategy. 

D. Moves of the Pawns. 

( i )  Suppose that whi le G 3 has not yet  been decided, the BP jus t  west 

of  the B NC/RC-channel in tersect ion or the BP two squares north of i t ,  moves south. 

Then WQ goes northwest to a point  one square southeast of the W Clock in tersect ion 

(ca l l  th is  square K). W can now win via his Clock since B loses one move on account 

of  blocking the entrance to the B Clock-channel wi th his own BP. 
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( i i )  Suppose that  whi le G 3 has not yet been decided, the WP jus t  south 

of K moves north onto K. Then BQ moves southeast to the middle of the f i r s t  leg of 

the B RC-channel, from where i t  can win by going west to the B NC-channel. 

I I .  Preventi_n~Backlash. Suppose that  B, e i ther  before G 3 has been decided or 

a f te r  i t  has been decided in W's favor,  assembles a squadron of  BQ's in the C l i -  

channels in an attempt to break back into some B Clock-channels or in to  some L i te ra l -  

channels, with the aim of reaching the C2j-channels via some Boolean Control lers.  

I f  B succeeds in capturing even one of the WQ's needed for a normal winning strategy 

of W, the game's outcome is not clear anymore. 

Now W commences executing his normal winning strategy at the la tes t  one move 

a f te r  the f i r s t  BQ is moved towards the Cl i-channels. Assume f i r s t  that  B attempts 

to break back via some B Clock-channels. B needs t+l moves to place a BQ at a 

Cl i /B Clock-channel in tersec t ion ,  which is a through- intersect ion.  Then W w i l l  cap- 

ture BQ there. Af ter  B moved k+l BQ's to such through- intersect ions and W cap- 

tured them (the f i r s t  wi th a WP~ subsequent ones with WB's, see Figure 5), B spent 

( k+ l ) ( t + l )  moves~ and W spent (k+ l ) t  moves pursuing his normal winning strategy and 

k+l moves capturing BQ's at t he i r  prospective backlash points. Since shields have 

thickness at least U > k+l , W has a su f f i c i en t  supply of bishops to do the l a t t e r .  

(Note that in Figure 5 the true distance between the three ver t ica l  channels is much 

larger than shown.) I t  is thus seen that in at most k-t+2 $ 6 addit ional moves, 

W wins. I f  B attempts to break back via some Li tera l -channels,  then i t  again takes 

t+l moves to place a BQ at a C l i /L i te ra l -channe l  in tersect ion,  which may be an 

is land. At least three addit ional  moves are made by BQ before i t  is captured by a 

WB in a W Switch. Thus a f o r t i o r i  W wins by pursuing his normal winning strategy 

and capturing (at  most k+l ) BQ's which t ry  to break back. 

5. POLYNOMIALITY OF TRANSFORMATION 

Recall our ea r l i e r  notat ion: p (q) is the number of And-Clauses in W-LOSE 

(B-LOSE) and m = IX[ + [Y[ . The subscripts i of the l i t e r a l s  x i and Yi are 

encoded in binary, Therefore the length of W-LOSE (B-LOSE) has magnitude about 

12 p log p (12 q log q) , and the input size is thus O((p+q)log(pq)) . Clearly 

m ~ 12(p+q) . 

For each variable our construct ion requires a constant amount of chess-pieces: 

The Boolean Contro l ler ,  four L i tera l -channels,  two Clock-channels and four Switches 

associated with a var iable require a constant amount of chess-pieces since each 

channel-segment has length O(k( t+ l ) )  which is a constant, and the shields around 

each channel also have thickness O(k( t+ l ) )  . Thus the sequence of m Boolean Con- 

t r o l l e r s  oriented in a general northwest to southeast d i rec t ion  (Figure 3), has 

length O(m) = O(p+q) Therefore also the Clause-channels and CDG-channe!s have 

length O(p+q) each. The to ta l  thickness of the Clause-channels with the i r  shields 

is also O(p+q) I t  fol lows that the construct ion can be real ized on a square 
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board of side n = O(p+q) , and so the transformation is polynomial. 

Note. I f  we provide Switches in the Clock-channels in addit ion to those in the 

Literal-channels, we can replace the bishop shields around the Clause-channels by 

pawn shields. The Switches themselves can be redesigned so that they' can operate 

without bishops. I f ,  in addit ion, we back up the Altars by queens instead of 

bishops, i t  seems possible to avoid using bishops altogether. This leads to the 

poss ib i l i t y  that nxn German checkers ("Dame") can be proved Exptime-complete by a 

method s imi lar  to the above proof. (In German checkers a piece reaching the opposite 

side of the board essent ia l ly  becomes a queen rather than a king. We are told that 

th is  is the rule also for the version of the game as played in the USSR.) Of course 

also other board-games (such as nxn Go ) may be Exptime-complete. 
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FIGURE 2. SCHEMA OF BLACK BOOLEAN CONTROLLER. 



290 

.J hi 
z_. 

W l  
CON]R( 

W SWITCHE' 

I SWITCHES 

(BBC) 

I So 
~ / ~ r ~  - 

9"~)(0~ FIGURE 3. GLOBAL VIEW OF THE CONSTRUCTION 
FOR THE CASE: 

J ~  W-LOSE = Ctl v CI2 v CI3, Ctl = XIA x 2 A Yl , CI2 = x2 ̂  Yl , CI3 = xI A x 2 

B - LOSE= C21 v C~v  C23, C21: xl ^ Y2, C2"z= ;,I ^ ~2^Yl ^ Y2 , C23: xl ^ ~,:z ̂  Y~ 



i I D
 

Z I N
 

m
 3 

L
IT

E
R

A
L

 

]H
A

N
N

E
L

 



292 

--I 
LU 

Z 
Z 

1" 

_I 
I, Ll 
Z 
Z 

"I- 
0 

I 
o,i 

bJ 
z 
Z 

"y Z 
0 

I 

-li lID 

W B 

~USE DELAY-LINE 
LENGTH (k - [ )  t 

:l n ) 
! 1011101Ol I01 i 3 ) c 

i ~110~tOl I ] 1 ) c 
I t o l o t ~  I, ] n ) la c ] l o  

J.~ IOlOlOI, i [] ]I0 C ] I0  
i IolOl, i 3 I!o c ~io 

IOl, 1 7 II1~ r, "llO 
!ill ' I 3 ]1o c ]1o 

I ) -i 11o r" 31 o 
) -I 110 C 11o 
• ~' )lC C )1o 
t 3 ) io k ,,)1oi c 
i ~, i lC ~ IO c 

)lC ) C 
I ~0 l l i  II 
i trx / • o! 
i 3 ) I D  

4 J; :)~ L _ : : E v 
-1 ) 

IiO { t '  

-~ -  ~ 

FIGURE 5. W CHANNEL CROSSINGS, W ALTAR AND CLAUSE-CHANNEL 

D E L A Y - L I N E S .  



293 

B CLOCK-CHANNEL 

W B 

CLOCK DELAY- LINE 
OF LENGTH kt-5 
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