
Modelling Games with the help of
Quantified Integer Linear Programs ?

T. Ederer, U. Lorenz, T. Opfer, J. Wolf

Institute of Mathematics, Technische Universität Darmstadt, Germany

Abstract. Quantified linear programs (QLPs) are linear programs with mathe-
matical variables being either existentially or universally quantified. The integer
variant (Quantified linear integer program, QIP) is PSPACE-complete, and can be
interpreted as a two-person zero-sum game. Additionally, it demonstrates remark-
able flexibility in polynomial reduction, such that many interesting practical prob-
lems can be elegantly modeled as QIPs. Indeed, the PSPACE-completeness guar-
antees that all PSPACE-complete problems as e.g. games like Othello, Gomoku
and Amazons can be described with the help of QIPs, with only moderate over-
head. In this paper, we present the Dynamic Graph Reliability (DGR) optimiza-
tion problem and the game Gomoku as examples.

1 Introduction

Game playing with a computer fascinates people all over the world since the begin-
nings of the Personal Computer, the computer for everyone. Thousands of boys and
girls loved to play Atari’s Pong or Namco’s Pacman and many other games. The Arti-
ficial Intelligence community has picked up the scientific aspects of game playing and
provided remarkable research results, especially in the area of game tree search. One
example of a successful research story is coupled to the game of chess [21, 2, 11, 10, 9,
4]. Algorithmic achievements like the introduction of the Alphabeta-algorithm or the
MTD(f) 1 algorithm [17] play a keyrole for the success. Currently, we observe a similar
evolution in Computer-Go [20]. Here, the UCT-algorithm 2 dominates the search algo-
rithm. Interestingly, it arose from a fruitful interplay of Theory and Practice [13, 3]. In
Go, the machines increase their playing strength year by year. Some other interesting
games have been completely solved [25], in others the machines dominate the human
players [24].

Independently, in the 1940s, linear programming arose as a mathematical planning
model and rapidly found its daily use in many industries. However, integer program-
ming, which was introduced in 1951, became dominant far later at the beginning of the
1990s.
For traditional deterministic optimization one assumes data for a given problem to be
fixed and exactly known when the decisions have to be taken. Nowadays, it is possible
to solve very large mixed integer programs of practical size, but companies observe
? Research partially supported by German Research Foundation (DFG) funded SFB 805.
1 MTD(f) or MTD(f,n): Memory-enhanced Test Driver with node n and value f)
2 UCT: Upper Confidence bounds applied to Trees

an increasing danger of disruptions, i.e., events occur which prevent companies from
acting as planned. Data are often afflicted with some kinds of uncertainties, and only
estimations, maybe in form of probability distributions, are known. Examples are flight
or travel times. Throughput-time, arrival times of externally produced goods, and scrap
rate are subject to variations in production planning processes.

Therefore, there is a need for planning and deciding under uncertainty which, how-
ever, often pushes the complexity of traditional optimization problems, which are in
P or NP, to PSPACE. These problems contain the spirit of games more then the spirit
of classic optimization. An interesting result from Complexity Theory is that all NP-
complete probems can be converted into each other with only moderate overhead.
Analogously, all PSPACE-complete problems can be converted into each other with
little effort, and the quantified versions of integer linear programs [22] cover the com-
plexity class PSPACE. As a consequence, we can model every other problem which
is PSPACE-complete or easier, with moderate (i.e. polynomial) overhead, and thus, a
PSPACE complete game like Othello, Gomoku, Amazons 3 etc. is modeled via the
game’s rules which are encoded. It is not necessary to encode the game tree of such a
game. Chess, Checkers and Go do not necessarily belong to this group of games. Their
inspected extensions are even EXPTIME-hard. For the interested reader, we refer to [6,
19]. If we restrict the maximum number of allowed moves in these games by a poly-
nomial in the input size, they are in PSPACE, and at least checkers is then PSPACE
complete [7].

Suitable candidate algorithms for solving QIPs are the typical algorithms from AI
like Alphabeta, UCT, Proof Number Search (PNS) [26] or MTD(f). Because of the
transformation overhead from the original problem description to a QIP, there is a cer-
tain loss in solution performance. We think that this overhead might be accepable, be-
cause solving QLPs allows the fast generation of bounds to the original QIP. We are
optimistic that these QLP bounds can considerably speed up the search process for the
QIP, similarly as the solutions of LP-relaxations speed up the branch and bound algo-
rithm in the context of conventional linear integer programming. However, to answer
this question is a matter of ongoing research. In summery, three subtasks must be solved
in order to generate huge impact on both, Game Playing and Mathematical Optimiza-
tion under Uncertainty.

– Applicability must be shown. This means we have to convince that relevant prob-
lems can elegantly be modeled with the help of QIPs.

– Fast algorithms for QLPs, the relaxed versions of QIPs, must be found.
– It has to be shown that the QLP solutions can be used in order to speed up the

search processes of QIPs by a huge margin. Note that this last step took about 20
years for conventional Mathematical Programming.

Thus, the idea of our research is to explore the abilities of linear programming
when applied to PSPACE-complete problems, similar as it was applied to NP-complete
problems in the 1990s. We could already show that QLPs have remarkable polyhedral
properties [15]. Moreover, we are able to solve comparably large QLPs in reasonable
time [5]. Recent research has shown that our QLP algorithm can be improved further by

3 for an overview, cf. http://en.wikipedia.org/wiki/Game complexity [18, 8, 12]

2

adopting some techniques known from the gaming community. For example, we could
derive cutting planes with an interesting similarity to alpha-beta pruning, which reduce
the search time by half.

2 The Problem Statement: Quantified Linear Programs

2.1 Problem statement

In the following, the definition of a Quantified Linear Program is stated. Let Q describe
the set of rational numbers and Z the set of integer numbers.

Given: A vector of variables x = (x1, ..., xn) ∈ Qn, upper and lower bounds u ∈ Zn
and l ∈ Zn with li ≤ xi ≤ ui , a matrix A ∈ Qm×n, a vector b ∈ Qm and a quantifier
string Q = (q1, ..., qn) ∈ {∀,∃}n, where the quantifier qi belongs to the variable xi,
for all 1 ≤ i ≤ n.

We denote a QIP/QLP as [Q(x) : Ax ≤ b]. A maximal subset of Q(x), which
contains a consecutive sequence of quantifiers of the same type, is called a (variable-)
block. A full assignment of numbers to the variables is interpreted as a game between
an existential player (fixing the existentially quantified variables) and a universal player
(fixing the universally quantified variables). The variables are set in consecutive order,
as determined by the quantifier string. Consequently, we say that a player makes the
move xk = z, if he fixes the variable xk to the value z. At each such move, the corre-
sponding player knows the settings of x1, ..., xi−1 before setting xi. If, at the end, all
constraints of Ax ≤ b hold, the existential player wins the game. Otherwise the univer-
sal player wins.

Question: Is there an assignment for variable xi with the knowledge, how x1, ..., xi−1
have been set before, such that the existential player wins the game, no matter, how the
universal player acts when he has to move?
This problem occurs in two variants: a) all variables are discrete (QIP) and b) all vari-
ables are rational (QLP).

2.2 Solutions of QIPs and QLPs: Strategies and Policies

Definition 1. Strategy: A strategy for the existential player S is a tuple (Vx∪̇Vy, E, L),
that is, a labeled tree of depth n with vertices V and edges E (|V | and |E| being their
respective sizes), where Vx and Vy are two disjoint sets of nodes, and L ∈ Q|E| is a set
of edge-labels. Nodes from Vx are called existential nodes, nodes from Vy are called
universal nodes. Each tree level i consists either of only existential nodes or of only
universal nodes, depending on the quantifier qi of the variable xi. Each edge of the set
E, leaving a tree-node of level i, represents an assignment for the variable xi. li ∈ L
describes the value of variable xi on edge ei ∈ E. Existential nodes have exactly one
successor, universal nodes have as many successors as the universal player has choices
at that node. In case of QLPs, it suffices to deal with two successors, induced by the
upper and the lower integer bounds of a universal variable, below each universal node

3

[15]. A strategy is called a winning strategy, if all paths from the root to a leaf represent
a vector x such that Ax ≤ b.

Definition 2. Policy: A policy is an algorithm that fixes a variable xi, being the ith

component of the vector x, with the knowledge, how x1, ..., xi−1 have been set before.

A three-dimensional example of a QIP/QLP is given below:

∀x1 ∈ [−1, 0] ∀x2 ∈ [0, 1] ∃x3 ∈ [−2, 2] :

10 −4 2
10 4 −2
−10 4 1
−10 −4 −1

 ·
x1x2
x3

 ≤

0
4
12
8

If we restrict the variables in the example to the integer bounds of their domains, we

observe a winning strategy for the existential player as shown in Figure 1. In this exam-
ple, a + in a tree leaf means that the existential player wins when this leaf is reached. A
- marks a win for the universal player. Numbers at the edges mark the choices for vari-
ables. If the universal player moves to −1 and 0 (i.e., he sets x1 = −1 and x2 = 0) the
existential player has to move to 2. If the universal player moves to −1 and 1, the exis-

Fig. 1. The winning strategy (solid) for the integer QLP example above

tential player must set the variable x3 = −2 etc. We see that the existential player has to
react carefully to former moves of the universal player. If we now relax the variables, al-
lowing non-integral values for the corresponding domains, the resulting solution space
of the corresponding QLP becomes polyhedral. Moreover, the solution of the resulting
problem when x1 = −1 is a line segment: B (cf. Fig 2). On the left side of Figure 2,
we can still see the corresponding partial strategy of the integer example in Figure 1.
The strategy consists of the two end-points of B. On the right side of Figure 2, the same
convex hull of the solution space is shown from another perspective. We observe that
the existential player has more freedom in the choice of x3, when the universal player
sets x1 = 0. If x1 = 0, the solution space of the rest-problem will just be the facet C.

Remark: If the integrality constraints of a QIP are relaxed, this will result in a QLP.
One may distinguish between QLPs where only the variables of the existential player

4

	

	

B	

	

	

C	

Fig. 2. A visualization of the 3-d solution space of the example above

are relaxed, and QLPs where all variables are relaxed. However, these two variants are
equivalent to each other, as in [15] it was shown that

– Let y1, .., ym be the universal variables of a given QLP. Let l1, ..., lm be lower
bound restrictions to the y-variables and let u1, ..., um be the corresponding upper
bounds. The existential player has a winning strategy against the universal player
who takes his choices yi ∈ {li, ui}, i ∈ 1...m if and only if the existential player
has a winning policy against the universal player who takes his choices from the
corresponding rational intervals, i.e. yi ∈ [li, ui], i ∈ 1...m.

– Whether or not there is a winning strategy for the existential player can be deter-
mined with polynomially many bits, as long as the number of quantifier changes is
constant, independently of the number of variables.

3 Modelling with QIPs

Two different games are modeled with the help of QIPs in this section. The first one is
a simple graph game, where a person has to travel on a graph from a given source node
to a desired target node. While he is traveling, an (evil) opponent erases some edges
and thus destroys the graph. However, also the opponent must follow certain rules. The
second game, which is inspected, is the well known Five in a Row game. Both are
PSPACE-complete, and can therefore not be modeled on small space by propositional
logic or by mixed integer linear programming (except PSPACE=NP).

3.1 A two-person zero-sum graph game

In order to demonstrate the modelling power of QIPs, we firstly present an example for
the so called worst-case Dynamic Graph Reliability problem. It is closely related to the
QSAT-problem and to the Dynamic Graph Reliability problem (DGR) [16]. A variant
of this game was re-invented by van Benthem [23] and analyzed by Löding and Rhode
[14].

5

A worst-case DGR (wcDGR) is defined as follows.

Given: A directed acyclic graph G = (V,E) with two special nodes s and t. More-
over, we have defined a mapping f : (V × E) → {0, 1} with f(v, e) = 1 if and only
if an opponent is allowed to erase edge e when we arrive at node v. Moreover, the op-
ponent has to follow some rules as well. For some edges, the opponent is not allowed
to erase more than one of two specific edges. In other words, there is another mapping
g : E × E → {0, 1} with g(e1, e2) = 1 if and only if it is allowed to erase both e1 and
e2.

Question: Is there a strategy, which allows the existential player to reach the target
node t from start node s, no matter, how the opponent acts?

Starting point of the wcDGR is a directed acyclic graph (DAG). An example is
shown on the left side of Figure 3. There, we assume that an opponent may erase at
most one of the edges e4 and e5. He can make them fail when we arrive at node v2 or
at node v3. Anyway, never both edges are allowed to fail, and no other edges can fail.
The optimization problem is to firstly make a choice whether to travel via edge e1 or e2.
Then, the opponent erases none or one of the edges e4 and e5. Thereafter, we choose
a remaining path to target t, if one exists. If we move from node v2 to node v3, our
opponent is again allowed to make one of the two edges e4 or e5 fail.

Let us introduce variables x1, ..., x5 for edge-choices. xi = 1 means ei is chosen
for traveling. The first block of constraints encodes the flow constraints of the classic
shortest-path problem on graphs. The constraints are applied to the x-variables (Fig. 3,
right, (1)). y2,4, y3,4, y2,5, y3,5 determine whether the opponent makes the edges e4 or
e5 fail when we reach the nodes v2 or v3, i.e. yi,j = 1 means that there is a failure on

!" #"

$%"

$&"

'("

'%"

'&"

')"

'*"

∃x1, x2∀y2,4, y2,5∃x3∀y3,4, y3,5∃x4, x5, x∆ (all binary) :

x1 = x4 + x3
x2 + x3 = x5
x1 + x2 = 1
x4 + x5 = 1

flow constraints (1)

x4 ≤ (1− y2,4) + (1− x1) + x∆
x4 ≤ (1− y3,4) + (1− x2 − x3) + x∆
x5 ≤ (1− y2,5) + (1− x1) + x∆
x5 ≤ (1− y3,5) + (1− x2 − x3) + x∆

failure constraints
for the existential
player (2)

2x∆ ≤ y3,4 + y3,5 + y2,4 + y2,5
} (3) critical failure

constraint for the
universal player.

Fig. 3. graph of wcDGR example and QIP description

6

edge ej . The second block (2) couples the decision variables xi to the yj,k-variables of
the opponent. E.g. x4 ≤ (1 − y2,4) + (1 − x1) + x∆ means that the existential player
will have to set x4 to zero and will not be allowed to use edge e4 if the existential player
first moves via edge e1 and then the universal player sets y2,4 = 1. Strictly seen, we
have to test whether the existential player has moved via node v2. However, a directed
graph can always be pre-manipulated such that all nodes of the original graph can be
entered via one specific incoming edge. Of course, for this purpose, additional nodes
and edges must be added, in general. The variable x∆ is used to ensure that also the
universal player follows his rules. The last constraint (3) 2x∆ ≤ y3,4+y3,5+y2,4+y2,5
expresses that the universal player is constrained by y3,4 + y3,5 + y2,4 + y2,5 ≤ 1. If he
breaks this rule, the existential player can set x∆ = 1 and the constraints of the second
block are trivialized. The existential player can then trivially win the game. Last but not
least, we can express the problem as shown on the right side of Fig. 3, with the given
quantifier-prefix, because the graph of a wcDGR is a DAG and therefore a partial order
(in time) of the nodes can be computed.

3.2 Gomoku

Five in a Row or Gomoku is a two-person strategy
game played with Go pieces on a Go board. Both play-
ers (black and white, black begins) alternately place
stones, until the first player gets an row of five horizon-
tally, vertically or diagonally connected stones. A once
placed stone cannot be moved or removed from the
board. With this standard set of rules, it is known that
black always wins on some board sizes (e.g. 15 × 15
[1]), but the problem is open for arbitrary n×n boards.

Parameters
As we showed in the preceeding paragraph, we can model that also the universal player
has to follow some rules with auxiliary existential variables. We simplify the description
of Gomoku by not considering this detail. Instead, we only present the rules for the
universal player. Let T denote the set of all moves (there are up to n2 moves until the
board is full) and N2 the set of all board coordinates. Let H2 be the set of coordinates
of a reduced board (used to detect connected rows of five stones) and C a counting set.
The decision parameters δt specify, which player places a stone in move t.

T := {1, . . . , n2}, N := {1, . . . , n},

H := {1, . . . , n− 4}, C := {0, . . . , 4},

δbt := t mod 2, δwt := 1− (t mod 2)

Variables
Let B = {0, 1} denote the binary set. For each move t ∈ T and each field with co-
ordinates (i, j) ∈ N2, let there be two binary variables xbt,i,j indicating a black stone

7

and xwt,i,j indicating a white stone. Using the set {b, w} as upper index implies that a
statement is equally valid for both black and white stones.

For each move t ∈ T and coordinate (k, l) ∈ N ×H , let h{b,w}t,k,l be an indicator
variable denoting the existence of a horizontally connected black or respectively white
row of five stones beginning on this coordinate. The range of column indices is slightly
smaller than N , because each such connected row cannot start near the right board
edge. Analogously, let there be vertical indicator variables v{b,w}t,k,l for each move t ∈ T
and coordinate (k, l) ∈ H ×N and diagonal indicator variables d{b,w}t,k,l for each move
t ∈ T and coordinate (k, l) ∈ H2.

Using the connected row indicators, winning criteria can be expressed. Let s{b,w}t

be a monotonously increasing indicator function (step function), which raises the first
time a player has any connected row of five. Further, let p{b,w}t be an indicator function
with norm one (peak function), which peaks the first time a player has any connected
row of five and is false otherwise. The event of winning the game can be expressed by
indicator variables e{b,w}t , which is true if and only if a player gets any connected row
of five for the first time and his opponent did not get any connected row of five before.
The retaliation indicator r{b,w} indicates, if a player does not win at all.

x
{b,w}
t,i,j ∈ B|T×N

2|

h
{b,w}
t,k,l ∈ B|T×N×H|, v{b,w}t,k,l ∈ B|T×H×N |, d{b,w}t,k,l , u

{b,w}
t,k,l ∈ B|T×H

2|

s
{b,w}
t ∈ B|T |, p{b,w}t ∈ B|T |, e{b,w}t ∈ B|T |, r{b,w} ∈ B

To express the quantifier string in a compact form, we denote the following abbre-
viations:

A0 :=
{
∀ (i, j) ∈ N2 : x

{b,w}
0,i,j , s

{b,w}
0

}
∀t ∈ T : At :=

{
∀ (i, j) ∈ N2 : x

{b,w}
t,i,j , ∀ (k, l) ∈ N ×H : h

{b,w}
t,k,l ,

∀ (k, l) ∈ H ×N : v
{b,w}
t,k,l , ∀ (k, l) ∈ H

2 : d
{b,w}
t,k,l ,

s
{b,w}
t , p

{b,w}
t , e

{b,w}
t

}
Optimization Model
The solution of a quantified optimization model is the information, if the player (in
this case black) can win against his opponent. If he can win, the first move leading to
the victory is provided. (If one wishes to play a full Gomoku game using a quantified
model, one therefore has to solve the model after each move of the opponent.)

We choose to extend the basic model with an objective function to rate black’s
strategy. If black can win at all, the optimal objective value is the first possible move in
which black can win. If black cannot win, but he can force a draw, the optimal objective
value is (n2 + 1). If black definitely loses, the optimal objective value minus (n2 + 1)
depicts the longest possible delay black can achieve until he is beaten. To extract the

8

basic information if black can win, the objective value can be compared to the remis
value (n2 + 1).

minimize ∑
t∈T

t · ebt + (2n2 + 1) · rb −
∑
t∈T

t · ewt − n2 · rw

such that

∃A0 ∃A1 ∀A2 ∃A3 ∀A4 . . . ∃ ∀∃ ∀ . . . An2 ∃ r{b,w}

∀ (i, j) ∈ N2 : x
{b,w}
0,i,j = 0, s

{b,w}
0 = 0 (1)

(initial state: All intersections are free. both players have not won yet.)

∀ t ∈ T , ∀ (i, j) ∈ N2 : xbt,i,j + xwt,i,j ≤ 1 (2)

(occupation: On every intersection no more than one stone can be placed.)

∀ t ∈ T , ∀ (i, j) ∈ N2 : x
{b,w}
t,i,j ≥ x

{b,w}
t−1,i,j (3)

(causality: Every once placed stone remains placed.)

∀ t ∈ T :
∑

(i,j)∈N2

x
{b,w}
t,i,j =

∑
(i,j)∈N2

x
{b,w}
t−1,i,j + δ

{b,w}
t (4)

(alternation: In every odd move black places exactly one stone. In every even move
white places exactly one stone. In both cases the opposite player remains idle.)

∀ t ∈ T , ∀ (k, l) ∈ N ×H, ∀ c ∈ C : h
{b,w}
t,k,l ≤ x

{b,w}
t,k,l+c (5a)

∀ t ∈ T , ∀ (k, l) ∈ N ×H : h
{b,w}
t,k,l ≥

∑
c∈C

x
{b,w}
t,k,l+c − 4 (5b)

(horizontal rows: a player got a horizontal row beginning on coordinate (k, l), if
and only if the specified and the next four intersections to the right contain stones of the
same color.)

∀ t ∈ T , ∀ (k, l) ∈ H ×N, ∀ c ∈ C : v
{b,w}
t,k,l ≤ x

{b,w}
t,k+c,l (6a)

∀ t ∈ T , ∀ (k, l) ∈ H ×N : v
{b,w}
t,k,l ≥

∑
c∈C

x
{b,w}
t,k+c,l − 4 (6b)

(vertical rows: a player got a vertical row beginning on coordinate (k, l), if and only
if the specified and the next four intersections to the bottom contain stones of the same
color.)

9

∀ t ∈ T , ∀ (k, l) ∈ H2, ∀ c ∈ C : d
{b,w}
t,k,l ≤ x

{b,w}
t,k+c,l+c (7a)

∀ t ∈ T , ∀ (k, l) ∈ H2 : d
{b,w}
t,k,l ≥

∑
c∈C

x
{b,w}
t,k+c,l+c − 4 (7b)

(downward diagonal rows: a player got a downward diagonal row beginning on co-
ordinate (k, l), if and only if the specified and the next four intersections to the bottom-
right contain stones of the same color.)

∀ t ∈ T , ∀ (k, l) ∈ H2, ∀ c ∈ C : u
{b,w}
t,k,l ≤ x

{b,w}
t,k+c,l+4−c (8a)

∀ t ∈ T , ∀ (k, l) ∈ H2 : u
{b,w}
t,k,l ≥

∑
c∈C

x
{b,w}
t,k+c,l+4−c − 4 (8b)

(upward diagonal rows: a player got an upward diagonal row beginning on coordi-
nate (k, l+4), if and only if this and the next four intersections to the top-right contain
stones of the same color. Heed that the upward diagonal row with index (k, l) does not
contain a stone on intersection (k, l).)

∀ t ∈ T : s
{b,w}
t ≥ s{b,w}t−1 (9a)

∀ t ∈ T , ∀ (k, l) ∈ N ×H : s
{b,w}
t ≥ h{b,w}t,k,l (9b)

∀ t ∈ T , ∀ (k, l) ∈ H ×N : s
{b,w}
t ≥ v{b,w}t,k,l (9c)

∀ t ∈ T , ∀ (k, l) ∈ H2 : s
{b,w}
t ≥ d{b,w}t,k,l (9d)

∀ t ∈ T , ∀ (k, l) ∈ H2 : s
{b,w}
t ≥ u{b,w}t,k,l (9e)

∀ t ∈ T : s
{b,w}
t ≤ s{b,w}t−1 +

∑
(k,l)∈N×H

h
{b,w}
t,k,l +

∑
(k,l)∈H×N

v
{b,w}
t,k,l

+
∑

(k,l)∈H2

d
{b,w}
t,k,l +

∑
(k,l)∈H2

u
{b,w}
t,k,l (9f)

(row history: The monotonously increasing indicator function s raises in the unique
move t, when the player gets a row for the first time.)

∀ t ∈ T : p
{b,w}
t = s

{b,w}
t − s{b,w}t−1 (10)

(critical move: The indicator function p with norm one peaks in the unique move t,
when the player gets a row for the first time.)

10

∀ t ∈ T : ebt ≤ pbt (11a)

∀ t ∈ T : ebt ≤ (1− swt) (11b)

∀ t ∈ T : ebt ≥ pbt + (1− swt)− 1 (11c)

∀ t ∈ T : ewt ≤ pwt (11d)

∀ t ∈ T : ewt ≤ (1− sbt) (11e)

∀ t ∈ T : ewt ≥ pwt + (1− sbt)− 1 (11f)

(victory: A player wins in the unique move t, if and only if he gets his first row in
move t and his opponent has not done so before move t. Heed the switched b/w indices.)

r{b,w} +
∑
t∈T

e
{b,w}
t = 1 (12)

(retaliation: If a player does not win at all, his retaliation indicator is activated. This
information is used to weight ties and defeats in the objective function.)

After all, we see that Gomoku could elegantly be described with the help of a QIP.
An obvious drawback is that the number of constraints has grown by a factor of n2.
However, it is neither the case that a short description necessarily leads to faster solu-
tions, nor do we claim that our description is the shortest possible one.

4 Conclusion

Quantified Linear Integer Programs form quite a powerful and elegant modelling tool.
They have structural properties of Linear Programs on the one hand, but on the other
hand, they describe the complexity class PSPACE and therefore are natural candidates
for the modeling of games like graph games, Go-Moku, Sokoban and many more. We
guess that this modeling technique has the potential to bridge the gap between Mathe-
matical Optimization and Game Playing in the Artificial Intelligence. In this paper, we
could show how to model some games with the help of QIPs. Moreover, we reported
about progress solving QLPs. Future work will show whether QLPs can be used to
speed up search times for QIPs in a similar way as MIPs are speeded up with the help
of LP-relaxation. If QLPs are able to play a similar role for QIPs as LPs play for IPs,
we can hope for a performance jump, at least for exact solving of PSPACE-complete
games.

References

1. L.V. Allis. Searching for solutions in games and artificial intelligence. In Ph.D. thesis, 1994.
2. J.H. Condon and K. Thompson. Belle chess hardware. Advances in Computer Chess III,

M.R.B. Clarke (Editor), Pergamon Press, pages 44–54, 1982.
3. R. Coulom. Efficient selectivity and backup operators in monte-carlo tree search. Proc. of

Computers and Games 2006, pages 72–83, 2006.

11

4. C. Donninger and U. Lorenz. The chess monster hydra. Proc. of International Conference
ob Field-Programmable Logic and Applications (FPL), pages 927–932, 2004. LNCS 3203,
Antwerp - Begium.

5. Thorsten Ederer, Ulf Lorenz, Alexander Martin, and Jan Wolf. Quantified linear programs: A
computational study. In accepted for European Symposium on Algorithms (ESA). Springer,
2011.

6. A. Fraenkel and D. Lichtenstein. Computing a perfect strategy for n×n chess requires time
exponential in n. J. Comb. Th. A, 31:199–214, 1981.

7. A. S. Fraenkel, M. R. Garey, D. S. Johnson, T. Schaefer, and Y. Yesha. The complexity of
checkers on an n × n board. In 19th Annual Symposium on Foundations of Computer Science
(FOCS 1978), pages 55–64, 1978.

8. R.A. Hearn. Amazons is pspace-complete. Technical Report cs.CC/0502013, Feb 2005.
9. F-H. Hsu. Ibm’s deep blue chess grandmaster chips. IEEE Micro, 18(2):70–80, 1999.

10. F-H. Hsu, T.S. Anantharaman, M.S. Campbell, and No. Deep thought. Computers, Chess,
and Cognition, pages 55–78, 1990.

11. R.M. Hyatt, B.E. Gower, and Nelson H.L. Cray blitz. Advances in Computer Chess IV, D.F.
Beal (Editor), Pergamon Press, pages 8–18, 1985.

12. S. Iwata and T. Kasai. The othello game on an n*n board is pspace-complete. Theoretical
Computer Science, 123:329–340, 1994.

13. L. Kocsis and C. Szepesvari. Bandit based monte-carlo planning. Proc. of ECML 2006,
Springer LNAI 4212, Berlin, pages 282–293, 2006.

14. C. Loeding and P. Rohde. Solving the sabotage game is pspace-hard. In 28th International
Symposium on Mathematical Foundations of Computer Science, MFCS, LNCS 2747, pages
531–540, 2003.

15. U. Lorenz, A. Martin, and J. Wolf. Polyhedral and algorithmic properties of quantified linear
programs. Annual European Symposium on Algorithms, pages 512–523, 2010.

16. C.H. Papadimitriou. Games against nature. J. of Comp. and Sys. Sc., pages 288–301, 1985.
17. Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie De Bruin. Best-first fixed-depth game-

tree search in practice. In Proceedings of the 14th international joint conference on Artificial
intelligence - Volume 1, pages 273–279, San Francisco, CA, USA, 1995. Morgan Kaufmann
Publishers Inc.

18. S. Reisch. Gobang ist pspace-vollstandig (gomoku is pspace-complete). Acta Informatica,
13: 5966, 1999.

19. J. M. Robson. The complexity of go. In Proceedings of IFIP Congress, pages 413–417,
1983.

20. D. Silver. Reinforcement Learning and Simulation-Based Search in Computer Go. PhD
thesis, University of Alberta, 2009.

21. D.J. Slate and L.R. Atkin. Chess 4.5 - the northwestern university chess program. Chess
Skill in Man and Machine, P.W. Frey (Editor), Springer Verlag, pages 82–118, 1977.

22. K. Subramani. Analyzing selected quantified integer programs. Springer, LNAI 3097, pages
342–356, 2004.

23. J. van Benthem. An essay on sabotage and obstruction. In Festschrift in Honour of Prof.
Joerg Siekmann, LNAI, 2002.

24. H.J. van den Herik, J. Nunn, and D. Levy. Adams outclassed by hydra. ICGA Journal,
28(2):107–110, 2005.

25. H.J. van den Herik, J.W.H.M. Uiterwijk, and J. van Rijswijk. Games solved: Now and in the
future. Artificial Intelligence, 134:277–312, 2002.

26. Mark H.M. Winands, Jos W.H.M. Uiterwijk, and Jaap van den Herik. Pds-pn: A new proof-
number search algorithm. In Computers and Games (CG), pages 61–74, 2002.

12

