
1General Game Playing State-Space Search and Planning

Lecture 3:
State-Space Search for Single Player Games

Single Player Games with Complete Information

Iterative Deepening

Data Structures and a Generic Search Procedure

2General Game Playing State-Space Search and Planning

Game Tree Search (General Concept)

3General Game Playing State-Space Search and Planning

Single Player Game: Buttons and Lights

4General Game Playing State-Space Search and Planning

Another Single Player Game: 15-Puzzle

5General Game Playing State-Space Search and Planning

State Machine Model

a

b

c

d

e

f

g

h

i

j

k

6General Game Playing State-Space Search and Planning

Forward Search

a

b

c

d

e

g

i

j

k

7General Game Playing State-Space Search and Planning

Backward Search

a

d

f

g

h

i

j

k

8General Game Playing State-Space Search and Planning

Bidirectional Search

a

b

c

d

e

f

g

h

i

j

k

(Note: This is the underlying principle of endgame databases.)

9General Game Playing State-Space Search and Planning

Breadth-First Search

a b c d e f g h i j

Advantage: Finds shortest solution
Disadvantage: Consumes large amount of space

a

jihgfe

dcb

10General Game Playing State-Space Search and Planning

Depth-First Search

a b e f c g h d i j

Advantage: Small intermediate storage
Disadvantage: Susceptible to garden paths
Disadvantage: Susceptible to infinite loops

a

jihgfe

dcb

11General Game Playing State-Space Search and Planning

Time Comparison

Branching factor 2, depth d, solution at depth k

Time Best Worst
__

Depth-First k 2d – 2d-k

Breadth-First 2k-1 2k - 1

12General Game Playing State-Space Search and Planning

Time Comparison

 Branching factor b, depth d, solution at depth k

Time Best Worst
__

Depth-First k

Breadth-First bk−1
b−1

bk−1−1
b−1

1

bd−bd−k

b−1

13General Game Playing State-Space Search and Planning

Space Comparison

 Worst case for search depth d and depth k

Space Binary General

Depth-First d (b - 1) * (d - 1) + 1

Breadth-First 2k-1 bk-1

14General Game Playing State-Space Search and Planning

Iterative Deepening

Run depth-limited search repeatedly

starting with a small initial depth d

incrementing on each iteration d := d + 1

until success or run out of alternatives

15General Game Playing State-Space Search and Planning

Example

d = 1: a
d = 2: a b c d
d = 3: a b e f c g h d i j

Advantage: Small intermediate storage
Advantage: Finds shortest solution
Advantage: Not susceptible to garden paths
Advantage: Not susceptible to infinite loops

a

jihgfe

dcb

16General Game Playing State-Space Search and Planning

Time Comparison

Worst case for branching factor 2

Depth Iterative Deepening Depth-First

1 1 1

2 4 3

3 11 7

4 26 15

5 57 31

n 2n+1 – n – 2 2n - 1

17General Game Playing State-Space Search and Planning

General Results

Theorem: The cost of iterative deepening search is
b/(b-1) times the cost of depth-first search (where b
is the branching factor).

Theorem: The space cost of iterative deepening is
the same as the space cost for depth-first search.

18General Game Playing State-Space Search and Planning

State Game Graph Model

a

b

c

d

e

f

g

h

i

j

k

19General Game Playing State-Space Search and Planning

State-Space Search

A graph can be searched for a path in time linear in the
number of nodes.

One small hitch: The graph is implicit in the state
description and must be built in advance or incrementally.

20General Game Playing State-Space Search and Planning

Logical Description

next(cell(M,N,x)) <=

does(xplayer,mark(M,N))

next(cell(M,N,o)) <=

does(oplayer,mark(M,N))

next(cell(M,N,W)) <=

true(cell(M,N,W)) ∧
distinct(W,b)

next(cell(M,N,b)) <=

true(cell(M,N,b)) ∧
does(P,mark(J,K)) ∧
(distinct(M,J) ∨ distinct(N,K))

21General Game Playing State-Space Search and Planning

A Data Structure for Matches

class match (thing)

{role, % role of own player

 roles, % all roles of a game

 theory, % game description

 startclock,

 playclock,

 hasher, % hash table

 root, % root node (initial position)

 fringe % nodes to be expanded

}

22General Game Playing State-Space Search and Planning

Sample Matches

match 23.

role: xplayer

roles: [xplayer,oplayer]

theory: [init(cell(1,1,b)), ...]

startclock: 30

playclock: 30

hasher: hasharray12

root: node1

fringe: [node2, node3, node4]

23General Game Playing State-Space Search and Planning

A Data Structure for Nodes

class node (thing)

{match,

 data, % current position

 theory,

 parent, % parent node

 alist, % list of (action, node) - pairs

 score

}

24General Game Playing State-Space Search and Planning

Sample Node

node2.

match: match23

data: [true(cell(1,1,x)), ...]

theory: [init(cell(1,1,b)), ...]

parent: node1

alist: [(mark(1,2),node21),(mark(1,3),node22),...]

score: -1

25General Game Playing State-Space Search and Planning

Basic Subroutines

function legals (role, node)

findall(X, legal(role,X), node.data ∪ node.theory)

function simulate (node,moves)

findall(true(P), next(P), node.data ∪ moves ∪ node.theory)

function terminal (node)

prove(terminal, node.data ∪ node.theory)

function goal (role, node)

findone(X, goal(role,X), node.data ∪ node.theory)

26General Game Playing State-Space Search and Planning

Node Expansion (Single Player Games)

function expand (node)
var match,role,old,data,al,nl,a
begin

match := node.match; role := match.role; al := []; nl := [];
for a in legals(role,node) do

data := simulate(node,{does(role,a)});
new := create_node(match,data,node.theory,node,[],-1);
if terminal(new) then new.score := goal(role,new);
nl := {new} ∪ nl;
al := {(a,new)} ∪ al

end-for;
node.alist := al; return nl

end

27General Game Playing State-Space Search and Planning

Time Restriction: Incremental Expansion by Nodes

procedure incexpand1 (match,count)
var node,i
begin

for i := 1 until i > count or match.fringe = [] do
node := head(match.fringe);
match.fringe := tail(match.fringe);
if node.score = -1 then

i := i + 1;
match.fringe := match.fringe ∪ expand(node)

end-if
end-for

end

28General Game Playing State-Space Search and Planning

Time Restriction: Incremental Expansion by Time

procedure incexpand2 (match,clock)
var node,end
begin

end := get_universal_time() + clock - 5;
while get_universal_time() < end and match.fringe ≠ [] do

node := head(match.fringe);
match.fringe := tail(match.fringe);
if node.score = -1 then

match.fringe := match.fringe ∪ expand(node)
end-if

end-while
end

29General Game Playing State-Space Search and Planning

State Collapse

The game tree for Tic-Tac-Toe has approximately 900,000 nodes.
There are approximately 5,000 distinct states. Searching the tree
requires 180 times more work than searching the graph.

One small hitch: Recognizing a repeat state takes time that varies
with the size of the graph thus far seen. Solution: Hashing

30General Game Playing State-Space Search and Planning

Node Expansion with State Collapse

function expand (node)
var match,role,old,data,al,nl,a
begin

match := node.match; role := match.role; al := []; nl := [];
for a in legals(role,node) do

data := sort(simulate(node,{does(role,a)}));
if not gethash(data,match.hasher) then

new := create_node(match,data,node.theory,node,[],-1);
puthash(data,match.hasher);
if terminal(new) then new.score := goal(role,new);
nl := {new} ∪ nl;
al := {(a,new)} ∪ al

end-if
end-for;
node.alist := al; return nl

end

31General Game Playing State-Space Search and Planning

Heuristic Search

These are all techniques for blind search. In traditional approaches
to game playing, it is common to use evaluation functions to assess
the quality of non-terminal states.

Example: piece count in chess.

In general game playing, the rules are not known in advance, and
an evaluation must be constructed automatically. This is where
much of the multifarious intelligence of a general game player lies.

(More on this in Lecture 6.)

32General Game Playing State-Space Search and Planning

Best Move (Single Player Games)

function bestmove (node)
var max,score,best,a,child
begin

max := 0;
(best,child) := head(node.alist);
for (a,child) in node.alist do

score := maxscore(child);
if score = 100 then return a;
if score > max then

max := score; best := a
end-if

end-for;
return best

end

33General Game Playing State-Space Search and Planning

Node Evaluation (Single Player Games)

function maxscore (node)
var max,score,a,child
begin

if node.score > -1 then return node.score;
if node.alist = [] then return -1;
max := 0;
for (a,child) in node.alist do

score := maxscore(child);
if score = 100 or score = -1 then return score;
if score > max then max := score

end-for;
return max

end

